CHAPTER III. GERMANY'S RISE TO MILITARY AIRSHIP SUPREMACY

Two incidents in the history of aviation stand out with exceptional prominence. The one is the evolution of the Zeppelin airship - a story teeming with romance and affording striking and illuminating glimpses of dogged perseverance, grim determination in the face of repeated disasters, and the blind courageous faith of the inventor in the creation of his own brain. The second is the remarkable growth of Germany's military airship organisation, which has been so rapid and complete as to enable her to assume supremacy in this field, and that within the short span of a single decade.

The Zeppelin has always aroused the world's attention, although this interest has fluctuated. Regarded at first as a wonderful achievement of genius, afterwards as a freak, then as the ready butt for universal ridicule, and finally with awe, if not with absolute terror - such in brief is the history of this craft of the air.

Count von Zeppelin can scarcely be regarded as an ordinary man. He took up the subject of flight at an age which the majority of individuals regard as the opportune moment for retirement from activity, and, knowing nothing about mechanical engineering, he concentrated his energies upon the study of this science to enable him to master the difficulties of a mechanical character incidental to the realisation of his grand idea. His energy and indomitable perseverance are equalled by his ardent patriotism, because, although the Fatherland discounted his idea when other Powers were ready to consider it, and indeed made him tempting offers for the acquisition of his handiwork, he stoutly declined all such solicitations, declaring that his invention, if such it may be termed, was for his own country and none other.

Count von Zeppelin developed his line of study and thought for one reason only. As an old campaigner and a student of military affairs he realised the shortcomings of the existing methods of scouting and reconnoitring. He appreciated more than any other man of the day perhaps, that if the commander-in-chief of an army were provided with facilities for gazing down upon the scene of operations, and were able to take advantage of all the information accruing to the man above who sees all, he would hold a superior position, and be able to dispose his forces and to arrange his plan of campaign to the most decisive advantage. In other words, Zeppelin conceived and developed his airship for one field of application and that alone-military operations. Although it has achieved certain successes in other directions these have been subsidiary to the primary intention, and have merely served to emphasise its military value.

Von Zeppelin was handicapped in his line of thought and investigation from the very first. He dreamed big things upon a big scale. The colossal always makes a peculiar and irresistible appeal to the Teutonic nature. So he contemplated the perfection of a big dirigible, eclipsing in every respect anything ever attempted or likely to be attempted by rival countries. Unfortunately, the realisation of the "colossal" entails an equally colossal financial reserve, and the creator of this form of airship for years suffered from financial cramp in its worst manifestation. Probably it was to the benefit of the world at large that Fortune played him such sorry tricks. It retarded the growth of German ambitions in one direction very effectively.

As is well known Zeppelin evolved what may be termed an individual line of thought in connection with his airship activities. He adopted what is known as the indeformable airship: that is to say the rigid, as opposed to the semi-rigid and flexible craft. As a result of patient experiment and continued researches he came to the conclusion that a huge outer envelope taking the form of a polygonal cylinder with hemispherical ends, constructed upon substantial lines with a metallic skeleton encased within an impermeable skin, and charged with a number of smaller balloon-shaped vessels containing the lifting agent - hydrogen gas - would fulfil his requirements to the greatest advantage. Model after model was built upon these lines. Each was subjected to searching tests with the invariable result attending such work with models. Some fulfilled the expectations of the inventor, others resolutely declined to illustrate his reasonings in any direction.

The inevitable happened. When a promising model was completed finally the inventor learned to his sorrow what every inventor realises in time. His fortune and the resources of others had been poured down the sink of experiment. To carry the idea from the model to the practical stage required more money, and it was not forthcoming. The inventor sought to enlist the practical sympathy of his country, only to learn that in Germany, as in other lands, the axiom concerning the prophet, honour, and country prevails. No exuberant inventor received such a cold douche from a Government as did Count Zeppelin from the Prussian authorities. For two years further work was brought practically to a standstill: nothing could be done unless the sinews of war were forthcoming. His friends, who had assisted him financially with his models, now concluded that their aid had been misplaced.

The inventor, though disappointed, was by no means cast down. He clung tenaciously to his pet scheme and to such effect that in 1896 a German Engineering Society advanced him some funds to continue his researches. This support sufficed to keep things going for another two years, during which time a full-sized vessel was built. The grand idea began to crystallise rapidly, with the result that when a public company was formed in 1898, sufficient funds were rendered available to enable the first craft to be constructed. It aroused considerable attention, as well it might, seeing that it eclipsed anything which had previously been attempted in connection with dirigibles. It was no less than 420 feet in length, by 38 feet in diameter, and was fitted with two cars, each of which carried a sixteen horse-power motor driving independent propellers rigidly attached to the body of the vessel. The propellers were both vertical and horizontal, for the purpose of driving the ship in the two planes - vertical and horizontal respectively.

The vessel was of great scientific interest, owing to the ingenuity of its design and construction. The metallic skeleton was built up from aluminium and over this was stretched the fabric of the envelope, care being observed to reduce skin friction, as well as to achieve impermeability. But it was the internal arrangement of the gas-lifting balloons which provoked the greatest concern. The hull was divided into compartments, each complete in itself, and each containing a small balloon inflated with hydrogen. It was sub-division as practised in connection with vessels ploughing the water applied to aerial craft, the purpose being somewhat the same. As a ship of the seas will keep afloat so long as a certain number of its subdivisions remain watertight, so would the Zeppelin keep aloft if a certain number of the gas compartments retained their charges of hydrogen. There were no fewer than seventeen of these gas-balloons arranged in a single line within the envelope. Beneath the hull and extending the full length of the latter was a passage which not only served as a corridor for communication between the cars, but also to receive a weight attached to a cable worked by a winch. By the movement of this weight the bow or stem of the vessel could be tilted to assist ascent and descent.

The construction of the vessel subsequently proved to be the easiest and most straightforward part of the whole undertaking. There were other and more serious problems to be solved. How would such a monster craft come to earth? How could she be manipulated upon the ground? How could she be docked? Upon these three points previous experience was silent. One German inventor who likewise had dreamed big things, and had carried them into execution, paid for his temerity and ambitions with his life, while his craft was reduced to a mass of twisted and torn metal. Under these circumstances Count Zeppelin decided to carry out his flights over the waters of the Bodensee and to house his craft within a floating dock. In this manner two uncertain factors might be effectively subjugated.

Another problem had been ingeniously overcome. The outer envelope presented an immense surface to the atmosphere, while temperature was certain to play an uncertain part in the behaviour of the craft. The question was to reduce to the minimum the radiation of heat and cold to the bags containing the gas. This end was achieved by leaving a slight air space between the inflated gas balloons and the inner surface of the hull.

The first ascent was made on July 2nd, 1900, but was disappointing, several breakdowns of the mechanism occurring while the vessel was in mid-air, which rendered it unmanageable, although a short flight was made which sufficed to show that an independent speed of 13 feet per second could be attained. The vessel descended and was made fast in her dock, the descent being effected safely, while manoeuvring into dock was successful. At least three points about which the inventor had been in doubt appeared to be solved - his airship could be driven through the air and could be steered; it could be brought to earth safely; and it could be docked.

The repairs to the mechanism were carried out and on October 17th and 21st of the same year further flights were made. By this time certain influential Teuton aeronautical experts who had previously ridiculed Zeppelin's idea had made a perfect volte-face. They became staunch admirers of the system, while other meteorological savants participated in the trials for the express purpose of ascertaining just what the ship could do. As a result of elaborate trigonometrical calculations it was ascertained that the airship attained an independent speed of 30 feet per second, which exceeded anything previously achieved. The craft proved to be perfectly manageable in the air, and answered her helm, thus complying with the terms of dirigibility. The creator was flushed with his triumph, but at the same time was doomed to experience misfortune. In its descent the airship came to "earth" with such a shock that it was extensively damaged. The cost of repairing the vessel was so heavy that the company declined to shoulder the liability, and as the Count was unable to defray the expense the wreck was abandoned.

Although a certain meed of success had been achieved the outlook seemed very black for the inventor. No one had any faith in his idea. He made imploring appeals for further money, embarked upon lecturing campaigns, wrote aviation articles for the Press, and canvassed possible supporters in the effort to raise funds for his next enterprise. Two years passed, but the fruits of the propaganda were meagre. It was at this juncture, when everything appeared to be impossible, that Count Zeppelin discovered his greatest friend. The German Emperor, with an eye ever fixed upon new developments, had followed Zeppelin's uphill struggle, and at last, in 1902, came to his aid by writing a letter which ran: -

"Since your varied flights have been reported to me it is a great pleasure to me to express my acknowledgment of your patience and your labours, and the endurance with which you have pressed on through manifold hindrances till success was near. The advantages of your system have given your ship the greatest attainable speed and dirigibility, and the important results you have obtained have produced an epoch-making step forward in the construction of airships and leave laid down a valuable basis for future experiments."

This Imperial appreciation of what had been accomplished proved to be the turning point in the inventor's fortunes. It stimulated financial support, and the second airship was taken in hand. But misfortune still pursued him. Accidents were of almost daily occurrence. Defects were revealed here and weaknesses somewhere else. So soon as one trouble was overcome another made itself manifest. The result was that the whole of the money collected by his hard work was expended before the ship could take to the air. A further crash and blasting of cherished hopes appeared imminent, but at this moment another Royal personage came to the inventor's aid.

The King of Wurtemberg took a personal interest in his subject's uphill struggle, and the Wurtemberg Government granted him the proceeds of a lottery. With this money, and with what he succeeded in raising by hook and by crook, and by mortgaging his remaining property, a round L20,000 was obtained. With this capital a third ship was taken in hand, and in 1905 it was launched. It was a distinct improvement upon its predecessors. The airship was 414 feet in length by 38 feet in diameter, was equipped with 17 gas balloons having an aggregate capacity of 367,000 cubic feet of hydrogen, was equipped with two 85 horse-power motors driving four propellers, and displaced 9 tons. All the imperfections incidental to the previous craft had been eliminated, while the ship followed improved lines in its mechanical and structural details.

The trials with this vessel commenced on November 30th, 1905, but ill-luck had not been eluded. The airship was moored upon a raft which was to be towed out into the lake to enable the dirigible to ascend. But something went wrong with the arrangements. A strong wind caught the ungainly airship, she dipped her nose into the water, and as the motor was set going she was driven deeper into the lake, the vessel only being saved by hurried deflation.

Six weeks were occupied in repairs, but another ascent was made on January 17th, 1906. The trials were fairly satisfactory, but inconclusive. One of the motors went wrong, and the longitudinal stability was found to be indifferent. The vessel was brought down, and was to be anchored, but the Fates ruled otherwise. A strong wind caught her during the night and she was speedily reduced to indistinguishable scrap.

Despite catastrophe the inventor wrestled gamely with his project. The lessons taught by one disaster were taken to heart, and arrangements to prevent the recurrence thereof incorporated in the succeeding craft. Unfortunately, however, as soon as one defect was remedied another asserted itself. It was this persistent revelation of the unexpected which caused another period of indifference towards his invention. Probably nothing more would have been heard of the Zeppelin after this last accident had it not been for the intervention of the Prussian Government at the direct instigation of the Kaiser, who had now taken Count Zeppelin under his wing. A State lottery was inaugurated, the proceeds of which were handed over to the indefatigable inventor, together with an assurance that if he could keep aloft 24 hours without coming to earth in the meantime, and could cover 450 miles within this period, the Government would repay the whole of the money he had lavished upon his idea, and liquidate all the debts he had incurred in connection therewith.

Another craft was built, larger than its predecessors, and equipped with two motors developing 170 horse-power. Upon completion it was submitted to several preliminary flights, which were so eminently successful that the inventor decided to make a trial trip under conditions closely analogous to those imposed for the Government test. On June 20th, 1908, at 8:26 a.m. the craft ascended and remained aloft for 12 hours, during which time it made an encouraging circular tour. Flushed with this success, the Count considered that the official award was within reach, and that all his previous disasters and misfortunes were on the eve of redemption.

The crucial test was essayed on August 5th, 1908. Accompanied by twelve observers the vessel ascended and travelled without incident for eight hours. Then a slight mishap demanded attention, but was speedily repaired, and was ignored officially as being too trivial to influence the main issue. Victory appeared within measurable distance: the arduous toil of many patient years was about to be rewarded. The airship was within sight of home when it had to descend owing to the development of another motor fault. But as it approached the ground, Nature, as if infuriated at the conquest, rose up in rebellion. A sudden squall struck the unwieldy monster. Within a few moments it became unmanageable, and through some inscrutable cause, it caught fire, with the result that within a few moments it was reduced to a tangled mass of metallic framework.

It was a catastrophe that would have completely vanquished many an inventor, but the Count was saved the gall of defeat. His flight, which was remarkable, inasmuch as he had covered 380 miles within 24 hours, including two unavoidable descents, struck the Teuton imagination. The seeds so carefully planted by the "Most High of Prussia" now bore fruit. The German nation sympathised with the indomitable inventor, appreciated his genius, and promptly poured forth a stream of subscriptions to enable him to build another vessel. The intimation that other Powers had approached the Count for the acquisition of his idea became known far and wide, together with the circumstance that he had unequivocally refused all offers. He was striving for the Fatherland, and his unselfish patriotism appealed to one and all. Such an attitude deserved hearty national appreciation, and the members of the great German public emptied their pockets to such a degree that within a few weeks a sum of L300,000 or $1,500,000 was voluntarily subscribed.

All financial embarrassments and distresses were now completely removed from the Count's mind. He could forge ahead untrammelled by anxiety and worry. Another Zeppelin was built and it created a world's record. It remained aloft for 38 hours, during which time it covered 690 miles, and, although it came to grief upon alighting, by colliding with a tree, the final incident passed unnoticed. Germany was in advance of the world. It had an airship which could go anywhere, irrespective of climatic conditions, and in true Teuton perspective the craft was viewed from the military standpoint. Here was a means of obtaining the mastery of the air: a formidable engine of invasion and aerial attack had been perfected. Consequently the Grand Idea must be supported with unbounded enthusiasm. The Count was hailed by his august master as "The greatest German of the twentieth century," and in this appreciation the populace wholeheartedly concurred. Whether such a panegyric from such an auspicious quarter is praise indeed or the equivalent of complete condemnation, history alone will be able to judge, but when one reflects, at this moment, upon the achievements of this aircraft during the present conflagration, the unprejudiced will be rather inclined to hazard the opinion that Imperial Teuton praise is a synonym for damnation.

Although the Zeppelin was accepted as a perfect machine it has never been possible to disperse the atmosphere of disaster with which it has been enveloped from the first. Vessel after vessel has gone up in smoke and flame: few craft of this type have enjoyed more than an evanescent existence; and each successive catastrophe has proved more terrible than its predecessor. But the Teutonic nation has been induced to pin its whole faith on this airship, notwithstanding that the more levelheaded engineers of other countries have always maintained the craft to be a "mechanical monstrosity" condemned from its design and principles of construction to disaster. Unshaken by this adverse criticism, Germany rests assured that by means of its Zeppelins it will achieve that universal supremacy which it is convinced is its Destiny.

This blind child-like faith has been responsible for the establishment and development of the Zeppelin factories. At Friedrichshafen the facilities are adequate to produce two of these vessels per month, while another factory of a similar capacity has been established at Berlin. Unfortunately such big craft demand large docks to accommodate them, and in turn a large structure of this character constitutes an easy mark for hostile attack, as the raiding airmen of the Allies have proved very convincingly.

But the Zeppelin must not be under-rated. Magnificent performances have been recorded by these vessels, such as the round 1,000 miles' trip in 1909, and several other equally brilliant feats since that date. It is quite true that each astounding achievement has been attended by an equally stupendous accident, but that is accepted as a mere incidental detail by the faithful Teutonic nation. Many vivid prophecies of the forthcoming flights by Zeppelin have been uttered, and it is quite probable that more than one will be fulfilled, but success will be attributable rather to accident than design.

Although the Zeppelin is the main stake of the German people in matters pertaining to aerial conquest, other types of airships have not been ignored, as related in another chapter. They have been fostered upon a smaller but equally effective scale. The semi-rigid Parseval and Gross craft have met with whole-hearted support, since they have established their value as vessels of the air, which is tantamount to the acceptance of their military value.

The Parseval is pronounced by experts to be the finest expression of aeronautical engineering so far as Teuton effort is concerned. Certainly it has placed many notable flights to its credit. The Gross airship is an equally serviceable craft, its lines of design and construction closely following those of the early French supple airships. There are several other craft which have become more or less recognised by the German nation as substantial units of war, such as the Ruthemberg, Siemens-Schukert, and so forth, all of which have proved their serviceability more or less conclusively. But in the somewhat constricted Teuton mind the Zeppelin and the Zeppelin only represents the ultima Thule of aerial navigation and the means for asserting the universal character of Pan-Germanism as well as "Kultur."