SUBMARINES IN WAR AND PEACE
During the early part of the Spanish-American war a fleet of vessels patrolled the Atlantic coast from Florida to Maine. The Spanish Admiral Cervera had left the home waters with his fleet of cruisers and torpedo-boats and no one knew where they were. The lookouts on all the vessels were ordered to keep a sharp watch for strange ships, and especially for those having a warlike appearance. All the newspapers and letters received on board the different cruisers of the patrol fleet told of the anxiety felt in the coast towns and of the fear that the Spanish ships would appear suddenly and begin a bombardment. To add to the excitement and expectation, especially of the green crews, the men were frequently called out of their comfortable hammocks in the middle of the night, and sent to their stations at guns and ammunition magazines, just as if a battle was imminent; all this was for the purpose of familiarising the crews with their duties under war conditions, though no enlisted man knew whether he was called to quarters to fight or for drill.
These were the conditions, then, when one bright Sunday the crew of an auxiliary cruiser were very busy cleaning ship—a very thorough and absorbing business. While the men were in the thick of the scrubbing, one of the crew stood up to straighten his back, and looked out through an open port in the vessel's side. As he looked he caught a glimpse of a low, black craft, hardly five hundred yards off, coming straight for the cruiser. The water foamed at her bows and the black smoke poured out of her funnels, streaking behind her a long, sinister cloud. It was one of those venomous little torpedo-boats, and she was apparently rushing in at top speed to get within easy range of the large warship.
“A torpedo-boat is headed straight for us,” cried the man at the port, and at the same moment came the call for general quarters.
As the men ran to their stations the word was passed from one to the other, “A Spanish torpedo-boat is headed for us.”
With haste born of desperation the crew worked to get ready for action, and when all was ready, each man in his place, guns loaded, firing lanyards in hand, gun-trainers at the wheels, all was still—no command to fire was given.
From the signal-boys to the firemen in the stokehole—for news travels fast aboard ship—all were expecting the muffled report and the rending, tearing explosion of a torpedo under the ship's bottom. The terrible power of the torpedo was known to all, and the dread that filled the hearts of that waiting crew could not be put into words.
Of course it was a false alarm. The torpedo-boat flew the Stars and Stripes, but the heavy smoke concealed it, and the officers, perceiving the opportunities for testing the men, let it be believed that a boat belonging to the enemy was bearing down on them.
The crews of vessels engaged in future wars will have, not only swifter, surer torpedo-boats to menace them, but even more dreadful foes.
The conning towers of the submarines show but a foot or two above the surface—a sinister black spot on the water, like the dorsal fin of a shark, that suggests but does not reveal the cruel power below; for an instant the knob lingers above the surface while the steersman gets his bearings, and then it sinks in a swirling eddy, leaving no mark showing in what direction it has travelled. Then the crew of the exposed warship wait and wonder with a sickening cold fear in their hearts how soon the crash will come, and pray that the deadly submarine torpedo will miss its mark.
Submarine torpedo-boats are actual, practical working vessels to-day, and already they have to be considered in the naval plans for attack and defense.
Though the importance of submarines in warfare, and especially as a weapon of defense, is beginning to be thoroughly recognised, it took a long time to arouse the interest of naval men and the public generally sufficient to give the inventors the support they needed.
Americans once had within their grasp the means to blow some of their enemies' ships out of the water, but they did not realise it, as will be shown in the following, and for a hundred years the progress in this direction was hindered.
It was during the American Revolution that a man went below the surface of the waters of New York Harbour in a submarine boat just big enough to hold him, and in the darkness and gloom of the under-water world propelled his turtle-like craft toward the British ships anchored in mid-stream. On the outside shell of the craft rested a magazine with a heavy charge of gunpowder which the submarine navigator intended to screw fast to the bottom of a fifty-gun British man-of-war, and which was to be exploded by a time-fuse after he had got well out of harm's way.
Slowly and with infinite labour this first submarine navigator worked his way through the water in the first successful under-water boat, the crank-handle of the propelling screw in front of him, the helm at his side, and the crank-handle of the screw that raised or lowered the craft just above and in front. No other man had made a like voyage; he had little experience to guide him, and he lacked the confidence that a well-tried device assures; he was alone in a tiny vessel with but half an hour's supply of air, a great box of gunpowder over him, and a hostile fleet all around. It was a perilous position and he felt it. With his head in the little conning tower he was able to get a glimpse of the ship he was bent on destroying, as from time to time he raised his little craft to get his bearings. At last he reached his all-unsuspecting quarry and, sinking under the keel, tried to attach the torpedo. There in the darkness of the depths of North River this unnamed hero, in the first practical submarine boat, worked to make the first torpedo fast to the bottom of the enemy's ship, but a little iron plate or bolt holding the rudder in place made all the difference between a failure that few people ever heard of and a great achievement that would have made the inventor of the boat, David Bushnell, famous everywhere, and the navigator a great hero. The little iron plate, however, prevented the screw from taking hold, the tide carried the submarine past, and the chance was lost.
David Bushnell was too far ahead of his time, his invention was not appreciated, and the failure of his first attempt prevented him from getting the support he needed to demonstrate the usefulness of his under-water craft. The piece of iron in the keel of the British warship probably put back development of submarine boats many years, for Bushnell's boat contained many of the principles upon which the successful under-water craft of the present time are built.
One hundred and twenty-five years after the subsurface voyage described above, a steel boat, built like a whale but with a prow coming to a point, manned by a crew of six, travelling at an average rate of eight knots an hour, armed with five Whitehead torpedoes, and designed and built by Americans, passed directly over the spot where the first submarine boat attacked the British fleet.
The Holland boat Fulton had already travelled the length of Long Island Sound, diving at intervals, before reaching New York, and was on her way to the Delaware Capes.
She was the invention of John P. Holland, and the result of twenty-five years of experimenting, nine experimental boats having been built before this persistent and courageous inventor produced a craft that came up to his ideals. The cruise of the Fulton was like a march of triumph, and proved beyond a doubt that the Holland submarines were practical, sea-going craft.
At the eastern end of Long Island the captain and crew, six men in all, one by one entered the Fulton through the round hatch in the conning tower that projected about two feet above the back of the fish-like vessel. Each man had his own particular place aboard and definite duties to perform, so there was no need to move about much, nor was there much room left by the gasoline motor, the electric motor, storage batteries, air-compressor, and air ballast and gasoline tanks, and the Whitehead torpedoes. The captain stood up inside of the conning tower, with his eyes on a level with the little thick glass windows, and in front of him was the wheel connecting with the rudder that steered the craft right and left; almost at his feet was stationed the man who controlled the diving-rudders; farther aft was the engineer, all ready for the word to start his motor; another man controlled the ballast tanks, and another watched the electric motor and batteries.
With a clang the lid-like hatch to the conning tower was closed and clamped fast in its rubber setting, the gasoline engine began its rapid phut-phut, and the submarine boat began its long journey down Long Island Sound. The boat started in with her deck awash—that is, with two or three feet freeboard or of deck above the water-line. In this condition she could travel as long as her supply of gasoline held out—her tanks holding enough to drive her 560 knots at the speed of six knots an hour, when in the semi-awash condition; the lower she sank the greater the surface exposed to the friction of the water and the greater power expended to attain a given speed.
As the vessel jogged along, with a good part of her deck showing above the waves, her air ventilators were open and the burnt gas of the engine was exhausted right out into the open; the air was as pure as in the cabin of an ordinary ship. Besides the work of propelling the boat, the engine being geared to the electric motor made it revolve, so turning it into a dynamo that created electricity and filled up the storage batteries.
From time to time, as this whale-like ship plowed the waters of the Sound, a big wave would flow entirely over her, and the captain would be looking right into the foaming crest. The boat was built for under-water going, so little daylight penetrated the interior through the few small deadlights, or round, heavy glass windows, but electric incandescent bulbs fed by current from the storage batteries lit the interior brilliantly.
The boat had not proceeded far when the captain ordered the crew to prepare to dive, and immediately the engine was shut down and the clutch connecting its shaft with the electric apparatus thrown off and another connecting the electric motor with the propeller thrown in; a switch was then turned and the current from the storage batteries set the motor and propeller spinning. While this was being done another man was letting water into her ballast tanks to reduce her buoyancy. When all but the conning tower was submerged the captain looked at the compass to see how she was heading, noted that no vessels were near enough to make a submarine collision likely, and gave the word to the man at his feet to dive twenty feet. Then a strange thing happened. The diving-helmsman gave a twist to the wheel that connected with the horizontal rudders aft of the propeller, and immediately the boat slanted downward at an angle of ten degrees; the water rose about the conning tower until the little windows were level with the surface, and then they were covered, and the captain looked into solid water that was still turned yellowish-green by the light of the sun; then swiftly descending, he saw but the faintest gleam of green light coming through twenty feet of water. The Fulton, with six men in her, was speeding along at five knots an hour twenty feet below the shining waters of the Sound.
The diving-helmsman kept his eye on a gauge in front of him that measured the pressure of water at the varying depths, but the dial was so marked that it told him just how many feet the Fulton was below the surface. Another device showed whether the boat was on an even keel or, if not exactly, how many degrees she slanted up or down.
With twenty feet of salt water above her and as much below, this mechanical whale cruised along with her human freight as comfortable as they would have been in the same space ashore. The vessel contained sufficient air to last them several hours, and when it became vitiated there were always the tanks of compressed air ready to be drawn upon.
Except for the hum of the motor and the slight clank of the steering-gear, all was silent; none of the noises of the outer world penetrated the watery depths; neither the slap of the waves, the whir of the breeze, the hiss of steam, nor rattle of rigging accompanied the progress of this submarine craft. As silently as a fish, as far as the outer world was concerned, the Fulton crept through the submarine darkness. If an enemy's ship was near it would be an easy thing to discharge one of the five Whitehead torpedoes she carried and get out of harm's way before it struck the bottom of the ship and exploded.
In the tube which opened at the very tip end of the nose of the craft lay a Whitehead (or automobile) torpedo, which when properly set and ejected by compressed air propelled itself at a predetermined depth at a speed of thirty knots an hour until it struck the object it was aimed at or its compressed air power gave out.
The seven Holland boats built for the United States Navy, of which the Fulton is a prototype, carry five of these torpedoes, one in the tube and two on either side of the hold, and each boat is also provided with one compensating tank for each torpedo, so that when one or all are fired their weight may be compensated by filling the tanks with water so that the trim of the vessel will be kept the same and her stability retained.
The Fulton, however, was bent on a peaceful errand, and carried dummy torpedoes instead of the deadly engines of destruction that the man-o'-war's man dreads.
“Dive thirty,” ordered the captain, at the same time giving his wheel a twist to direct the vessel's course according to the pointing finger of the compass.
“Dive thirty, sir,” repeated the steersman below, and with a slight twist of his gear the horizontal rudders turned and the submarine inclined downward; the level-indicator showed a slight slant and the depth-gauge hand turned slowly round—twenty-two, twenty-five, twenty-eight, then thirty feet, when the helmsman turned his wheel back a little and the vessel forged ahead on a level keel.
At thirty feet below the surface the little craft, built like a cigar on purpose to stand a tremendous squeeze, was subjected to a pressure of 2,160 pounds to the square foot. To realise this pressure it will be necessary to think of a slab of iron a foot square and weighing 2,160 pounds pressing on every foot of the outer surface of the craft. Of course, the squeeze is exerted on all sides of the submarine boats when fully submerged, just as every one is subjected to an atmospheric pressure of fifteen pounds to the square inch on every inch of his body.
The Fulton and other submarine boats are so strongly built and thoroughly braced that they could stand an even greater pressure without damage.
When the commander of the Fulton ordered his vessel to the surface, the diving-steersman simply reversed his rudders so that they turned upward, and the propeller, aided by the natural buoyancy of the boat, simply pushed her to the surface. The Holland boats have a reserve buoyancy, so that if anything should happen to the machinery they would rise unaided to the surface.
Compressed air was turned into the ballast tanks, the water forced out so that the boat's buoyancy was increased, and she floated in a semi-awash, or light, condition. The engineer turned off the current from the storage batteries, threw off the motor from the propeller shaft, and connected the gasoline engine, started it up, and inside of five minutes from the time the Fulton was navigating the waters of the Sound at a depth of thirty feet she was sailing along on the surface like any other gasoline craft.
And so the ninety-mile journey down Long Island Sound, partly under water, partly on the surface, to New York, was completed. The greater voyage to the Delaware Capes followed, and at all times the little sixty-three-foot boat that was but eleven feet in diameter at her greatest girth carried her crew and equipment with perfect safety and without the least inconvenience.
Such a vessel, small in size but great in destructive power, is a force to be reckoned with by the most powerful battle-ship. No defense has yet been devised that will ward off the deadly sting of the submarine's torpedo, delivered as it is from beneath, out of the sight and hearing of the doomed ships' crews, and exploded against a portion of the hull that cannot be adequately protected by armour.
Though the conning-dome of a submarine presents a very small target, its appearance above water shows her position and gives warning of her approach. To avoid this tell-tale an instrument called a periscope has been invented, which looks like a bottle on the end of a tube; this has lenses and mirrors that reflect into the interior of the submarine whatever shows above water. The bottle part projects above, while the tube penetrates the interior.
The very unexpectedness of the submarine's attack, the mere knowledge that they are in the vicinity of a fleet and may launch their deadly missiles at any time, is enough to break down the nerves of the strongest and eventually throw into a panic the bravest crew.
That the crews of the war-ships will have to undergo the strain of submarine attack in the next naval war is almost sure. All the great nations of the world have built fleets of submarines or are preparing to do so.
In the development of under-water fighting-craft France leads, as she has the largest fleet and was the first to encourage the designing and building of them. But it was David Bushnell that invented and built the first practical working submarine boat, and in point of efficiency and practical working under service conditions in actual readiness for hostile action the American boats excel to-day.
A PEACEFUL SUBMARINE
Under the green sea, in the total darkness of the great depths and the yellowish-green of the shallows of the oceans, with the seaweeds waving their fronds about their barnacle-encrusted timbers and the creatures of the deep playing in and about the decks and rotted rigging, lie hundreds of wrecks. Many a splendid ship with a valuable cargo has gone down off a dangerous coast; many a hoard of gold or silver, gathered with infinite pains from the far corners of the earth, lies intact in decaying strong boxes on the bottom of the sea.
To recover the treasures of the deep, expeditions have been organised, ships have sailed, divers have descended, and crews have braved great dangers. Many great wrecking companies have been formed which accomplish wonders in the saving of wrecked vessels and cargoes. But in certain places all the time and at others part of the time, wreckers have had to leave valuable wrecks a prey to the merciless sea because the ocean is too angry and the waves too high to permit of the safe handling of the air-hose and life-line of the divers who are depended upon to do all the under-water work, rigging of hoisting-tackle, placing of buoys, etc. Indeed, it is often impossible for a vessel to stay in one place long enough to accomplish anything, or, in fact, to venture to the spot at all.
It was an American boy who, after reading Jules Verne's “Twenty Thousand Leagues Under the Sea,” said to himself, “Why not?” and from that time set out to put into practice what the French writer had imagined.
Simon Lake set to work to invent a way by which a wrecked vessel or a precious cargo could be got at from below the surface. Though the waves may be tossing their whitecaps high in air and the strong wind may turn the watery plain into rolling hills of angry seas, the water twenty or thirty feet below hardly feels any surface motion. So he set to work to build a vessel that should be able to sail on the surface or travel on the bottom, and provide a shelter from which divers could go at will, undisturbed by the most tempestuous sea. People laughed at his idea, and so he found great difficulty in getting enough capital to carry out his plan, and his first boat, built largely with his own hands, had little in its appearance to inspire confidence in his scheme. Built of wood, fourteen feet long and five feet deep, fitted with three wheels, Argonaut Junior looked not unlike a large go-cart such as boys make out of a soap-box and a set of wooden wheels. The boat, however, made actual trips, navigated by its inventor, proving that his plan was feasible. Argonaut Junior, having served its purpose, was abandoned, and now lies neglected on one of the beaches of New York Bay.
The Argonaut, Mr. Lake's second vessel, had the regular submarine look, except that she was equipped with two great, rough tread-wheels forward, and to the underside of her rudder was pivoted another. She was really an under-water tricycle, a diving-bell, a wrecking-craft, and a surface gasoline-boat all rolled into one. When floating on the surface she looked not unlike an ordinary sailing craft; two long spars, each about thirty feet above the deck, forming the letter A—these were the pipes that admitted fresh air and discharged the burnt gases of the gasoline motor and the vitiated air that had been breathed. A low deck gave a ship-shape appearance when floating, but below she was shaped like a very fat cigar. Under the deck and outside of the hull proper were placed her gasoline tanks, safe from any possible danger of ignition from the interior. From her nose protruded a spar that looked like a bowsprit but which was in reality a derrick; below the derrick-boom were several glazed openings that resembled eyes and a mouth: these were the lookout windows for the under-water observer and the submarine searchlight.
The Argonaut was built to run on the surface or on the bottom; she was not designed to navigate half-way between. When in search of a wreck or made ready for a cruise along the bottom, the trap door or hatch in her turret-like pilot house was tightly closed; the water was let into her ballast tanks, and two heavy weights to which were attached strong cables that could be wound or unwound from the inside were lowered from their recesses in the fore and after part of the keel of the boat to the bottom; then the motor was started connected to the winding mechanism, and, the buoyancy of the boat being greatly reduced, she was drawn to the bottom by the winding of the anchor cables. As she sank, more and more water was taken into her tanks until she weighed slightly more than the water she displaced. When her wheels rested on the bottom her anchor-weights were pulled completely into their wells, so that they would not interfere with her movements.
Then the strange submarine vehicle began her voyage on the bottom of the bay or ocean. Since the pipes projected above the surface plenty of fresh air was admitted, and it was quite as easy to run the gasoline engine under water as on the surface. In the turrets, as far removed as possible from the magnetic influences of the steel hull, the compass was placed, and an ingeniously arranged mirror reflected its readings down below where the steersman could see it conveniently. Aft of the steering-wheel was the gasoline motor, connected with the propeller-shaft and also with the driving-wheels; it was so arranged that either could be thrown out of gear or both operated at once. She was equipped with depth-gauges showing the distance below the surface, and another device showing the trim of the vessel; compressed-air tanks, propelling and pumping machinery, an air-compressor and dynamo which supplied the current to light the ship and also for the searchlight which illuminated the under-water pathway—all this apparatus left but little room in the hold, but it was all so carefully planned that not an inch was wasted, and space was still left for her crew of three or four to work, eat, and even sleep, below the waves.
Forward of the main space of the boat were the diving and lookout compartments, which really were the most important parts of the boat, as far as her wrecking ability was concerned. By means of a trap door in the diving compartment through the bottom of the boat a man fitted with a diving-suit could go out and explore a wreck or examine the bottom almost as easily as a man goes out of his front door to call for an “extra.” It will be thought at once, “But the water will rush in when the trap door is opened.” This is prevented by filling the diving compartment, which is separated from the main part of the ship by steel walls, with compressed air of sufficient pressure to keep the water from coming in—that is, the pressure of water from without equals the pressure of air from within and neither element can pass into the other's domain.
An air-lock separates the diver's section from the main hold so that it is possible to pass from one to the other while the entrance to the sea is still open. A person entering the lock from the large room first closes the door between and then gradually admits the compressed air until the pressure is the same as in the diving compartment, when the door into it may be safely opened. When returning, this operation is simply reversed. The lookout stands forward of the diver's space. When the Argonaut rolls along the bottom, round openings protected with heavy glass permit the lookout to follow the beam of light thrown by the searchlight and see dimly any sizable obstruction. When the diving compartment is in use the man on lookout duty uses a portable telephone to tell his shipmates in the main room what is happening out in the wet, and by the same means the reports of the diver can be communicated without opening the air-lock.
This little ship (thirty-six feet long) has done wonderful things. She has cruised over the bottom of Chesapeake Bay, New York Bay, Hampton Roads, and the Atlantic Ocean, her driving-wheels propelling her when the bottom was hard, and her screw when the oozy condition of the submarine road made her spiked wheels useless except to steer with. Her passengers have been able to examine the bottom under twenty feet of water (without wetting their feet), through the trap door, with the aid of an electric light let down into the clear depths. Telephone messages have been sent from the bottom of Baltimore Harbour to the top of the New York World building, telling of the conditions there in contrast to the New York editor's aerial perch. Cables have been picked up and examined without dredging—a hook lowered through the trap door being all that was necessary. Wrecks have been examined and valuables recovered.
Although the Argonaut travelled over 2,000 miles under water and on the surface, propelled by her own power, her inventor was not satisfied with her. He cut her in two, therefore, and added a section to her, making her sixty-six feet long; this allowed more comfortable quarters for her crew, space for larger engines, compressors, etc.
It was off Bridgeport, Connecticut, that the new Argonaut did her first practical wrecking. A barge loaded with coal had sunk in a gale and could not be located with the ordinary means. The Argonaut, however, with the aid of a device called the “wreck-detector,” also invented by Mr. Lake, speedily found it, sank near it, and also submerged a new kind of freight-boat built for the purpose by the inventor. A diver quickly explored the hulk, opened the hatches of the freight-boat, which was cigar-shaped like the Argonaut and supplied with wheels so it could be drawn over the bottom, and placed the suction-tube in position. Seven minutes later eight tons of coal had been transferred from the wreck to the submarine freight-boat. The hatches were then closed and compressed air admitted, forcing out the water, and five minutes later the freight-boat was floating on the surface with eight tons of coal from a wreck which could not even be located by the ordinary means.
It is possible that in the future these modern “argonauts” will be seeking the golden fleeces of the sea in wrecks, in golden sands like the beaches of Nome, and that these amphibious boats will be ready along all the dangerous coasts to rush to the rescue of noble ships and wrest them from the clutches of the cruel sea.
Mr. Lake has also designed and built a submarine torpedo-boat that will travel on the surface, under the waves, or on the bottom; provided with both gasoline and electric power, and, fitted with torpedo discharge tubes, she will be able to throw a submarine torpedo; her diver could attach a charge of dynamite to the keel of an anchored warship, or she could do great damage by hooking up cables through her diver's trap door and cutting them, and by setting adrift anchored torpedoes and submarine mines.
Thus have Jules Verne's imaginings come true, and the dream Nautilus, whose adventures so many of us have breathlessly followed, has been succeeded by actual “Hollands” and practical “Argonauts” designed by American inventors and manned by American crews.
- 28072 reads