BRIDGE BUILDERS AND SOME OF THEIR ACHIEVEMENTS
In the old days when Rome was supreme a Caesar decreed that a bridge should be built to carry a military road across a valley, or ordered that great stone arches should be raised to conduct a stream of water to a city; and after great toil, and at the cost of the lives of unnumbered labourers, the work was done—so well done, in fact, that much of it is still standing, and some is still doing service.
In much the same regal way the managers of a railroad order a steel bridge flung across a chasm in the midst of a wilderness far from civilisation, or command that a new structure shall be substituted for an old one without disturbing traffic; and, lo and behold, it is done in a surprisingly short time. But the new bridges, in contrast to the old ones, are as spider webs compared to the overarching branches of a great tree. The old type, built of solid masonry, is massive, ponderous, while the new, slender, graceful, is built of steel.
One day a bridge-building company in Pennsylvania received the specifications giving the dimensions and particulars of a bridge that an English railway company wished to build in far-off Burma, above a great gorge more than eight hundred feet deep and about a half-mile wide. From the meagre description of the conditions and requirements, and from the measurements furnished by the railroad, the engineers of the American bridge company created a viaduct. Just as an author creates a story or a painter a picture, so these engineers built a bridge on paper, except that the work of the engineers' imagination had to be figured out mathematically, proved, and reproved. Not only was the soaring structure created out of bare facts and dry statistics, but the thickness of every bolt and the strain to be borne by every rod were predetermined accurately.
And when the plans of the great viaduct were completed the engineers knew the cost of every part, and felt so sure that the actual bridge in far-off Burma could be built for the estimated amount, that they put in a bid for the work that proved to be far below the price asked by English builders.
And so this company whose works are in Pennsylvania was awarded the contract for the Gokteik viaduct in Burma, half-way round the world from the factory.
In the midst of a wilderness, among an ancient people whose language and habits were utterly strange to most Americans, in a tropical country where modern machinery and appliances were practically unknown, a small band of men from the young republic contracted to build the greatest viaduct the world had ever seen. All the material, all the tools and machinery, were to be carried to the opposite side of the earth and dumped on the edge of the chasm. From the heaps of metal the small band of American workmen and engineers, aided by the native labourers, were to build the actual structure, strong and enduring, that was conceived by the engineers and reduced to working-plans in far-off Pennsylvania.
From ore dug out of the Pennsylvania mountains the steel was made and, piece by piece, the parts were rolled, riveted, or welded together so that every section was exactly according to the measurements laid out on the plan. As each part was finished it was marked to correspond with the plan and also to show its relation to its neighbour. It was like a gigantic puzzle. The parts were made to fit each other accurately, so that when the workmen in Burma came to put them together the tangle of beams and rods, of trusses and braces should be assembled into a perfect, orderly structure—each part in its place and each doing its share of the work.
With men trained to work with ropes and tackle collected from an Indian seaport, and native riveters gathered from another place, Mr. J.C. Turk, the engineer in charge, set to work with the American bridgemen and the constructing engineer to build a bridge out of the pieces of steel that lay in heaps along the brink of the gorge. First, the traveller, or derrick, shipped from America in sections, was put together, and its long arm extended from the end of the tracks on which it ran over the abyss.
From above the great steel beams were lowered to the masonry foundations of the first tower and securely bolted to them, and so, piece by piece, the steel girders were suspended in space and swung this way and that until each was exactly in its proper position and then riveted permanently. The great valley resounded with the blows of hammers on red-hot metal, and the clangour of steel on steel broke the silence of the tropic wilderness. The towers rose up higher and higher, until the tops were level with the rim of the valley, and as they were completed the horizontal girders were built on them, the rails laid, and the traveller pushed forward until its arm swung over the foundation of the next tower.
And so over the deep valley the slender structure gradually won its way, supporting itself on its own web as it crawled along like a spider. Indeed, so tall were its towers and so slender its steel cords and beams that from below it appeared as fragile as a spider's web, and the men, poised on the end of swinging beams or standing on narrow platforms hundreds of feet in air, looked not unlike the flies caught in the web.
The towers, however, were designed to sustain a heavy train and locomotive and to withstand the terrific wind of the monsoon. The pressure of such a wind on a 320-foot tower is tremendous. The bridge was completed within the specified time and bore without flinching all the severe tests to which it was put. Heavy trains—much heavier than would ordinarily be run over the viaduct—steamed slowly across the great steel trestle while the railroad engineers examined with utmost care every section that would be likely to show weakness. But the designers had planned well, the steel-workers had done their full duty, and the American bridgemen had seen to it that every rivet was properly headed and every bolt screwed tight—and no fault could be found.
The bridge engineer's work is very diversified, since no two bridges are alike. At one time he might be ordered to span a stream in the midst of a populous country where every aid is at hand, and his next commission might be the building of a difficult bridge in a foreign wilderness far beyond the edge of civilisation.
Bridge-building is really divided into four parts, and each part requires a different kind of knowledge and experience.
First, the designer has to have the imagination to see the bridge as it will be when it is completed, and then he must be able to lay it out on paper section by section, estimating the size of the parts necessary for the stress they will have to bear, the weight of the load they will have to carry, the effect of the wind, the contraction and expansion of cold and heat, and vibration; all these things must be thought of and considered in planning every part and determining the size of each. Also he must know what kind of material to use that is best fitted to stand each strain, whether to use steel that is rigid or that which is so flexible that it can be tied in a knot. On the designer depends the price asked for the work, and so it is his business to invent, for each bridge is a separate problem in invention, a bridge that will carry the required weight with the least expenditure of material and labour and at the same time be strong enough to carry very much greater loads than it is ever likely to be called upon to sustain. The designer is often the constructor as well, and he is always a man of great practical experience. He has in his time stepped out on a foot-wide girder over a rushing stream, directing his men, and he has floundered in the mud of a river bottom in a caisson far below the surface of the stream, while the compressed air kept the ooze from flowing in and drowning him and his workmen.
The second operation of making the pieces that go into the structure is simply the following out of the clearly drawn plans furnished by the designing engineers. Different grades of steel and iron are moulded or forged into shape and riveted together, each part being made the exact size and shape required, even the position of the holes through which the bolts or rivets are to go that are to secure it to the neighbouring section being marked on the plan.
The foundations for bridges are not always put down by the builders of the bridge proper; that is a work by itself and requires special experience. On the strength and permanency of the foundation depends the life of the bridge. While the foundries and steel mills are making the metal-work the foundations are being laid. If the bridge is to cross a valley, or carry the roadway on the level across a depression, the placing of the foundations is a simple matter of digging or blasting out a big hole and laying courses of masonry; but if a pier is to be built in water, or the land on which the towers are to stand is unstable, then the problem is much more difficult.
For bridges like those that connect New York and Brooklyn, the towers of which rest on bed-rock below the river's bottom, caissons are sunk and the massive masonry is built upon them. If you take a glass and sink it in water, bottom up, carefully, so that the air will not escape, it will be noticed that the water enters the glass but a little way: the air prevents the water from filling the glass. The caisson works on the same principle, except that the air in the great boxlike chamber is highly compressed by powerful pumps and keeps the water and river ooze out altogether.
The caissons of the third bridge across the East River were as big as a good-sized house—about one hundred feet long and eighty feet wide. It took five large tugs more than two days to get one of them in its proper place. Anchored in its exact position, it was slowly sunk by building the masonry of the tower upon it, and when the lower edges of the great box rested on the bottom of the river men were sent down through an air-lock which worked a good deal like the lock of a canal. The men, two or three at a time, entered a small round chamber built of steel which was fitted with two air-tight doors at the top and bottom; when they were inside the air-lock, the upper door was closed and clamped tight, just as the gates leading from the lower level of a canal are closed after the boat is in the lock; then very gradually the air in the compartment is compressed by an air-compressor until the pressure in the air-lock is the same as that in the caisson chamber, when the lower door opened and allowed the men to enter the great dim room. Imagine a room eighty by one hundred feet, low and criss-crossed by massive timber braces, resting on the black, slimy mud of the river bottom; electric lights shine dimly, showing the half-naked workmen toiling with tremendous energy by reason of the extra quantity of oxygen in the compressed air. The workmen dug the earth and mud from under the iron-shod edges of the caisson, and the weight of the masonry being continually added to above sunk the great box lower and lower. From time to time the earth was mixed with water and sucked to the surface by a great pump. With hundreds of tons of masonry above, and the watery mud of the river on all sides far below the keels of the vessels that passed to and fro all about, the men worked under a pressure that was two or three times as great as the fifteen pounds to the square inch that every one is accustomed to above ground. If the pressure relaxed for a moment the lives of the men would be snuffed out instantly—drowned by the inrushing waters; if the excavation was not even all around, the balance of the top-heavy structure would be lost, the men killed, and the work destroyed entirely. But so carefully is this sort of work done that such an accident rarely occurs, and the caissons are sunk till they rest on bed-rock or permanent, solid ground, far below the scouring effect of currents and tides. Then the air-chamber is filled with concrete and left to support the great towers that pierce the sky above the waters.
The pneumatic tube, which is practically a steel caisson on a small scale operated in the same way, is often used for small towers, and many of the steel sky-scrapers of the cities are built on foundations of this sort when the ground is unstable.
Foundations of wooden and iron piles, driven deep in the ground below the river bottom, are perhaps the most common in use. The piles are sawed off below the surface of the water and a platform built upon them, which in turn serves as the foundation for the masonry.
The great Eads Bridge, which was built across the Mississippi at St. Louis, is supported by towers the foundations of which are sunk 107 feet below the ordinary level of the water; at this depth the men working in the caissons were subjected to a pressure of nearly fifty pounds to the square inch, almost equal to that used to run some steam-engines.
The bridge across the Hudson at Poughkeepsie was built on a crib or caisson open at the top and sunk by means of a dredge operated from above taking out the material from the inside. The wonder of this is hard to realise unless it is remembered that the steel hands of the dredge were worked entirely from above, and the steel rope sinews reached down below the surface more than one hundred feet sometimes; yet so cleverly was the work managed that the excavation was perfect all around, and the crib sank absolutely straight and square.
It is the fourth department of bridge-building that requires the greatest amount not only of knowledge but of resourcefulness. In the final process of erection conditions are likely to arise that were not considered when the plans were drawn.
The chief engineer in charge of the erection of a bridge far from civilisation is a little king, for it is necessary for him to have the power of an absolute monarch over his army of workmen, which is often composed of many different races.
With so many thousand tons of steel and stone dumped on the ground at the bridge site, with a small force of expert workmen and a greater number of unskilled labourers, in spite of bad weather, floods, or fearful heat, the constructing engineer is expected to finish the work within the specified time, and yet it must withstand the most exacting tests.
In the heart of Africa, five hundred miles from the coast and the source of supplies, an American engineer, aided by twenty-one American bridgemen, built twenty-seven viaducts from 128 to 888 feet long within a year.
The work was done in half the time and at half the cost demanded by the English bidders. Mr. Lueder, the chief engineer, tells, in his account of the work, of shooting lions from the car windows of the temporary railroad, and of seeing ostriches try to keep pace with the locomotive, but he said little of his difficulties with unskilled workmen, foreign customs, and almost unspeakable languages. The bridge engineer the world over is a man who accomplishes things, and who, furthermore, talks little of his achievements.
Though the work of the bridge builders within easy reach of the steel mills and large cities is less unusual, it is none the less adventurous.
In 1897, a steel arch bridge was completed that was built around the old suspension bridge spanning the Niagara River over the Whirlpool Rapids. The old suspension bridge had been in continuous service since 1855 and had outlived its usefulness. It was decided to build a new one on the same spot, and yet the traffic in the meantime must not be disturbed in the least. It would seem that this was impossible, but the engineers intrusted with the work undertook it with perfect confidence. To any one who has seen the rushing, roaring, foaming waters of unknown depth that race so fast from the spray-veiled falls that they are heaped up in the middle, the mere thought of men handling huge girders of steel above the torrent, and of standing on frail swinging platforms two hundred or more feet above the rapids, causes chills to run down the spine; yet the work was undertaken without the slightest doubt of its successful fulfilment.
It was manifestly impossible to support the new structure from below, and the old bridge was carrying about all it could stand, so it was necessary to build the new arch, without support from underneath, over the foaming water of the Niagara rapids two hundred feet below. Steel towers were built on either side of the gorge, and on them was laid the platform of the bridge from the towers nearest to the water around and under the old structure. The upper works were carried to the solid ground on a level with the rim of the gorge and there securely anchored with steel rods and chains held in masonry. Then from either side the arch was built plate by plate from above, the heavy sheets of steel being handled from a traveller or derrick that was pushed out farther and farther over the stream as fast as the upper platform was completed. The great mass of metal on both sides of the Niagara hung over the stream, and was only held from toppling over by the rods and chains solidly anchored on shore. Gradually the two ends of the uncompleted arch approached each other, the amount of work on each part being exactly equal, until but a small space was left between. The work was so carefully planned and exactly executed that the two completed halves of the arch did not meet, but when all was in readiness the chains on each side, bearing as they did the weight of more than 1,000,000 pounds, were lengthened just enough, and the two ends came together, clasping hands over the great gorge. Soon the tracks were laid, and the new bridge took up the work of the old, and then, piece by piece, the old suspension bridge, the first of its kind, was demolished and taken away.
Over the Niagara gorge also was built one of the first cantilever bridges ever constructed. To uphold it, two towers were built close to the water's edge on either side, and then from the towers to the shores, on a level with the upper plateau, the steel fabric, composed of slender rods and beams braced to stand the great weight it would have to carry, was built on false work and secured to solid anchorages on shore. Then on this, over tracks laid for the purpose, a crane was run (the same process being carried out on both sides of the river simultaneously), and so the span was built over the water 239 feet above the seething stream, the shore ends balancing the outer sections until the two arms met and were joined exactly in the middle. This bridge required but eight months to build, and was finished in 1883. From the car windows hardly any part of the slender structure can be seen, and the train seems to be held over the foaming torrent by some invisible support, yet hundreds of trains have passed over it, the winds of many storms have torn at its members, heat and cold have tried by expansion and contraction to rend it apart, yet the bridge is as strong as ever.
Sometimes bridges are built a span or section at a time and placed on great barges, raised to just their proper height, and floated down to the piers and there secured.
A railroad bridge across the Schuylkill at Philadelphia was judged inadequate for the work it had to do, and it was deemed necessary to replace it with a new one. The towers it rested upon, therefore, were widened, and another, stronger bridge was built alongside, the new one put upon rollers as was the old, and then between trains the old structure was pushed to one side, still resting on the widened piers, and the new bridge was pushed into its place, the whole operation occupying less than three minutes. The new replaced the old between the passing of trains that run at four or five-minute intervals. The Eads Bridge, which crosses the Mississippi at St. Louis, was built on a novel plan. Its deep foundations have already been mentioned. The great “Father of Waters” is notoriously fickle; its channel is continually changing, the current is swift, and the frequent floods fill up and scour out new channels constantly. It was necessary, therefore, in order to span the great stream, to place as few towers as possible and build entirely from above or from the towers themselves. It was a bold idea, and many predicted its failure, but Captain Eads, the great engineer, had the courage of his convictions and carried out his plans successfully. From each tower a steel arch was started on each side, built of steel tubes braced securely; the building on each side of every tower was carried on simultaneously, one side of every arch balancing the weight on the other side. Each section was like a gigantic seesaw, the tower acting as the centre support; the ends, of course, not swinging up and down. Gradually the two sections of every arch approached each other until they met over the turbid water and were permanently connected. With the completion of the three arches, built entirely from the piers supporting them, the great stream was spanned. The Eads Bridge was practically a double series of cantilevers balancing on the towers. Three arches were built, the longest being 520 feet long and the two shorter ones 502 feet each.
Every situation that confronts the bridge builder requires different handling; at one time he may be called upon to construct a bridge alongside of a narrow, rocky cleft over a rushing stream like the Royal Gorge, Colorado, where the track is hung from two great beams stretched across the chasm, or he may be required to design and construct a viaduct like that gossamer structure three hundred and five feet high and nearly a half-mile long across the Kinzua Creek, in Pennsylvania. Problems which have nothing to do with mechanics often try his courage and tax his resources, and many difficulties though apparently trivial, develop into serious troubles. The caste of the different native gangs who worked on the twenty-seven viaducts built in Central Africa is a case in point: each group belonging to the same caste had to be provided with its own quarters, cooking utensils, and camp furniture, and dire were the consequences of a mix-up during one of the frequent moves made by the whole party.
And so the work of a bridge builder, whether it is creating out of a mere jumble of facts and figures a giant structure, the shaping of glowing metal to exact measurements, the delving in the slime under water for firm foundations, or the throwing of webs of steel across yawning chasms or over roaring streams, is never monotonous, is often adventurous, and in many, many instances is a great civilising influence.
- 22769 reads