CHAPTER XLVI. Accidents and their Cause (Cont.)

One of the main causes of aeroplane accidents has been the breakage of some part of the machine while in the air, due to defective work in its construction. There is no doubt that air-craft are far more trustworthy now than they were two or three years ago. Builders have learned from the mistakes of their predecessors as well as profited by their own. After every serious accident there is an official enquiry as to the probable cause of the accident, and information of inestimable value has been obtained from such enquiries.

The Royal Aero Club of Great Britain has a special "Accidents Investigation Committee" whose duty it is to issue a full report on every fatal accident which occurs to an aeroplane in this country. As a rule, representatives of the committee visit the scene of the accident as soon as possible after its occurrence. Eye-witnesses are called before them to give evidence of the disaster; the remains of the craft are carefully inspected in order to discover any flaw in its construction; evidence is taken as to the nature and velocity of the wind on the day of the accident, the approximate height at which the aviator was flying, and, in fact, everything of value that might bear on the cause of the accident.

As a good example of an official report we may quote that issued by the Accidents Investigation Committee of the Royal Aero Club on the fatal accident which occurred to Colonel Cody and his passenger on 7th August, 1913.

"The representatives of the Accidents Committee visited the scene of the accident within a few hours of its occurrence, and made a careful examination of the wrecked air-craft. Evidence was also taken from the eye-witnesses of the accident.

"From the consideration of the evidence the Committee regards the following facts as clearly established:

"1. The air-craft was built at Farnborough, by Mr. S. F. Cody, in July, 1913.

"2. It was a new type, designed for the Daily Mail Hydroplane Race round Great Britain, but at the time of the accident had a land chassis instead of floats.

"3. The wind at the time of the accident was about 10 miles per hour.

"4. At about 200 feet from the ground the air-craft buckled up and fell to the ground. A large piece of the lower left wing, composing the whole of the front spar between the fuselage and the first upright, was picked up at least 100 yards from the spot where the air-craft struck the ground.

"5. The fall of the air-craft was broken considerably by the trees, to such an extent that the portion of the fuselage surrounding the seats was practically undamaged.

"6. Neither the pilot nor passenger was strapped in.

"0pinion. The Committee is of opinion that the failure of the air-craft was due to inherent structural weakness.

"Since that portion of the air-craft in which the pilot and passenger were seated was undamaged, it is conceivable their lives might have been saved had they been strapped in."

This occasion was not the only time when the Accidents Investigation Committee recommended the advisability of the airman being strapped to his seat. But many airmen absolutely refuse to wear a belt, just as many cyclists cannot bear to have their feet made fast to the pedals of their cycles by using toe-clips.

Mention of toe-clips brings us to other accidents which sometimes befall airmen. As we have seen in a previous chapter, Mr. Hawker's accident in Ireland was due to his foot slipping over the rudder bar of his machine. It is thought that the disaster to Mr. Pickles' machine on "Aerial Derby" day in 1913 was due to the same cause, and on one occasion Mr. Brock was in great danger through his foot slipping on the rudder bar while he was practising some evolutions at the London Aerodome. Machines are generally flying at a very fast rate, and if the pilot loses control of the machine when it is near the ground the chances are that the aeroplane crashes to earth before he can right it. Both Mr. Hawker and Mr. Pickles were flying low at the time of their accidents, and so their machines were smashed; fortunately Mr. Brock was comparatively high up in the air, and though his machine rocked about and banked in an ominous manner, yet he was able to gain control just in the nick of time.

To prevent accidents of this kind the rudder bars could be fitted with pedals to which the pilot's feet could be secured by toe-clips, as on bicycle pedals. Indeed, some makers of air-craft have already provided pedals with toe-clips for the rudder bar. Probably some safety device such as this will soon be made compulsory on all machines.

We have already remarked that certain pilots do not pay sufficient heed to the inspection of their machines before making a flight. The difference between pilots in this respect is interesting to observe. On the great day at Hendon, in 1913 - the Aerial Derby day - there were over a dozen pilots out with their craft.

From the enclosure one could watch the airmen and their mechanics as the machines were run out from the hangars on to the flying ground. One pilot walked beside his mechanics while they were running the machine to the starting place, and watched his craft with almost fatherly interest. Before climbing into his seat he would carefully inspect the spars, bolts, wires, controls, and so on; then he would adjust his helmet and fasten himself into his seat with a safety belt.

"Surely with all that preliminary work he is ready to start," remarked one of the spectators standing by. But no! the engine must be run at varying speeds, while the mechanics hold back the machine. This operation alone took three or four minutes, and all that the pilot proposed to do was to circle the aerodrome two or three times. An onlooker asked a mechanic if there were anything wrong with that particular machine. "No!" was the reply; "but our governor's very faddy, you know!"

And now for the other extreme! Three mechanics emerged from a hangar pushing a rather ungainly-looking biplane, which bumped over the uneven ground. The pilot was some distance behind, with cigarette in mouth, joking with two or three friends. When the machine was run out into the open ground he skipped quickly up to it, climbed into the seat, started the engine, waved a smiling "good-bye", and was off. For all he knew, that rather rough jolting of the craft while it was being removed from the hangar might have broken some wire on which the safety of his machine, and his life, depended. The excuse cannot be made that his mechanics had performed this all-important work of inspection, for their attention was centred on the daring "banking " evolutions of some audacious pilot in the aerodrome.

Mr. C. G. Grey, the well-known writer on aviation matters, and the editor of The Aeroplane, says, with regard to the need of inspection of air-craft: -

"A pilot is simply asking for trouble if he does not go all over his machine himself at least once a day, and, if possible, every time he is starting for a flight.

"One seldom hears, in these days, of a broken wheel or axle on a railway coach, yet at the chief stopping places on our railways a man goes round each train as it comes in, tapping the tires with a hammer to detect cracks, feeling the hubs to see if there is any sign of a hot box, and looking into the grease containers to see if there is a proper supply of lubricant. There ought to be a similar inspection of every aeroplane every time it touches the ground. The jar of even the best of landings may fracture a bolt holding a wire, so that when the machine goes up again the wire may fly back and break the propeller, or get tangled in the control wires, or a strut or socket may crack in landing, and many other things may happen which careful inspection would disclose before any harm could occur. Mechanics who inspected machines regularly would be able to go all over them in a few minutes, and no time would be wasted. As it is, at any aerodrome one sees a machine come down, the pilot and passenger (a fare or a pupil) climb out, the mechanics hang round and smoke cigarettes, unless they have to perform the arduous duties of filling up with petrol. In due course another passenger and a pilot climb in, a mechanic swings the propeller, and away they go quite happily. If anything casts loose they come down - and it is truly wonderful how many things can come loose or break in the air without anyone being killed. If some thing breaks in landing, and does not actually fall out of place, it is simply a matter of luck whether anyone happens to see it or not."

This advice, coming from a man with such wide experience of the theory and practice of flying, should surely be heeded by all those who engage in deadly combat with the demons of the air. In the early days of aviation, pilots were unacquainted with the nature and method of approach of treacherous wind gusts; often when they were flying along in a steady, regular wind, one of these gusts would strike their craft on one side, and either overturn it or cause it to over-bank, so that it crashed to earth with a swift side-slip through the air.

Happily the experience of those days, though purchased at the cost of many lives, has taught makers of air-craft to design their machines on more trustworthy lines. Pilots, too, have made a scientific study of air eddies, gusts, and so on, and the danger of flying in a strong or gusty wind is comparatively small.