CHAPTER XL. The Atmosphere and the Barometer
For the discovery of how to find the atmospheric pressure we are indebted to an Italian named Torricelli, a pupil of Galileo, who carried out numerous experiments on the atmosphere toward the close of the sixteenth century.
Torricelli argued that, as air is a fluid, if it had weight it could be made to balance another fluid of known weight. In his experiments he found that if a glass tube about 3 feet in length, open at one end only, and filled with mercury, were placed vertically with the open end submerged in a cup of mercury, some of the mercury in the tube descended into the cup, leaving a column of mercury about 30 inches in height in the tube. From this it was deduced that the pressure of air on the surface of the mercury in the cup forced it up the tube to the height Of 30 inches, and this was so because the weight of a column of air from the cup to the top of the atmosphere was only equal to that of a column of mercury of the same base and 30 inches high.
Torricelli's experiment can be easily repeated. Take a glass tube about 3 feet long, closed at one end and open at the other; fill it as full as possible with mercury. Then close the open end with the thumb, and invert the tube in a basin of mercury so that the open end dips beneath the surface. The mercury in the tube will be found to fall a short distance, and if the height of the column from the surface of the mercury in the basin be measured you will find it will be about 30 inches. As the tube is closed at the top there is no downward pressure of air at that point, and the space above the mercury in the tube is quite empty: it forms a VACUUM. This vacuum is generally known as the TORRICELLIAN VACUUM, after the name of its discoverer.
Suppose, now, a hole be bored through the top of the tube above the column of mercury, the mercury will immediately fall in the tube until it stands at the same level as the mercury in the basin, because the upward pressure of air through the liquid in the basin would be counterbalanced by the downward pressure of the air at the top, and the mercury would fall by its own weight.
A few years later Professor Boyle proposed to use the instrument to measure the height of mountains. He argued that, since the pressure of the atmosphere balanced a column of mercury 30 inches high, it followed that if one could find the weight of the mercury column one would also find the weight of a column of air standing on a base of the same size, and stretching away indefinitely into space. It was found that a column of mercury in a tube having a sectional area of 1 square inch, and a height of 30 inches, weighed 15 pounds; therefore the weight of the atmosphere, or air pressure, at sea-level is about 15 pounds to the square inch. The ordinary mercury barometer is essentially a Torricellian tube graduated so that the varying heights of the mercury column can be used as a measure of the varying atmospheric pressure due to change of weather or due to alteration of altitude. If we take a mercury barometer up a hill we will observe that the mercury falls. The weight of atmosphere being less as we ascend, the column of mercury supported becomes smaller.
Although the atmosphere has been proved to be over 200 miles high, it has by no means the same density throughout. Like all gases, air is subject to the law that the density increases directly as the pressure, and thus the densest and heaviest layers are those nearest the sea-level, because the air near the earth's surface has to support the pressure of all the air above it. As airmen rise into the highest portions of the atmosphere the height of the column of air above them decreases, and it follows that, having a shorter column of air to support, those portions are less dense than those lower down. So rare does the atmosphere become, when great altitudes are reached, that at a height of seven miles breathing is well-nigh impossible, and at far lower altitudes than this airmen have to be supported by inhalations of oxygen.
One of the greatest altitudes was reached by two famous balloonists, Messrs. Coxwell and Glaisher. They were over seven miles in the air when the latter fell unconscious, and the plucky aeronauts were only saved by Mr. Coxwell pulling the valve line with his teeth, as all his limbs were disabled.
- 12099 reads