CHAPTER XIX. The Wright Brothers and their Secret Experiments

In the beginning of the twentieth century many of the leading European newspapers contained brief reports of aerial experiments which were being carried out at Dayton, in the State of Ohio, America. So wonderful were the results of these experiments, and so mysterious were the movements of the two brothers - Orville and Wilbur Wright - who conducted them, that many Europeans would not believe the reports.

No inventors have gone about their work more carefully, methodically, and secretly than did these two Americans, who, hidden from prying eyes, "far from the madding crowd", obtained results which brought them undying fame in the world of aviation.

For years they worked at their self-imposed task of constructing a flying machine which would really soar among the clouds. They had read brief accounts of the experiments carried out by Otto Lilienthal, and in many ways the ground had been well paved for them. It was their great ambition to become real "human birds"; "birds" that would not only glide along down the hillside, but would fly free and unfettered, choosing their aerial paths of travel and their places of destination.

Though there are few reliable accounts of their work in those remote American haunts, during the first six years of the present century, the main facts of their life-history are now well known, and we are able to trace their experiments, step by step, from the time when they constructed their first simple aeroplane down to the appearance of the marvellous biplane which has made them world-famed.

For some time the Wrights experimented with a glider, with which they accomplished even more wonderful results than those obtained by Lilienthal. These two young American engineers - bicyclemakers by trade - were never in a hurry. Step by step they made progress, first with kites, then with small gliders, and ultimately with a large one. The latter was launched into the air by men running forward with it until sufficient momentum had been gained for the craft to go forward on its own account.

The first aeroplane made by the two brothers was a very simple one, as was the method adopted to balance the craft. There were two main planes made of long spreads of canvas arranged one above another, and on the lower plane the pilot lay. A little plane in front of the man was known as the ELEVATOR, and it could be moved up and down by the pilot; when the elevator was tilted up, the aeroplane ascended, when lowered, the machine descended.

At the back was a rudder, also under control of the pilot. The pilot's feet, in a modern aeroplane, rest upon a bar working on a central swivel, and this moves the rudder. To turn to the left, the left foot is moved forward; to turn to the right the right foot.

But it was in the balancing control of their machine that the Wrights showed such great ingenuity. Running from the edges of the lower plane were some wires which met at a point where the pilot could control them. The edges of the plane were flexible; that is, they could be bent slightly either up or down, and this movement of the flexible plane is known as WING WARPING.

You know that when a cyclist is going round a curve his machine leans inwards. Perhaps some of you have seen motor races, such as those held at Brooklands; if so, you must have noticed that the track is banked very steeply at the corners, and when the motorist is going round these corners at, say, 80 miles an hour, his motor makes a considerable angle with the level ground, and looks as if it must topple over. The aeroplane acts in a similar manner, and, unless some means are taken to prevent it, it will turn over.

Let us now see how the pilot worked the "Wright" glider. Suppose the machine tilted down on one side, while in the air, the pilot would pull down, or warp, the edges of the planes on that side of the machine which was the lower. By an ingenious contrivance, when one side was warped down, the other was warped up, with the effect that the machine would be brought back into a horizontal position. (As we shall return to the subject of wing warping in a later chapter, we need not discuss it further here.)

It must not be imagined that as soon as the Wrights had constructed a glider fitted with this clever system of controlling mechanism they could fly when and where they liked. They had to practise for two or three years before they were satisfied with the results of their experiments: neglecting no detail, profiting by their failures, and moving logically from step to step. They never attempted an experiment rashly: there was always a reason for what they did. In fact, their success was due to systematic progress, achieved by wonderful perseverance.

But now, for a short time, we must leave the pioneer work of the Wright brothers, and turn to the invention of the petrol engine as applied to the motor car, an invention which was destined to have far-reaching results on the science of aviation.