William J. Claxton

In Berlin, on March 8, 1917, there passed away a man whose name will be remembered as long as the English language is spoken. For Count Zeppelin belongs to that little band of men who giving birth to a work of genius have also given their names to the christening of it; and so the patronymic will pass down the ages.

The under part of the frame of the Wright biplane, technically known as the CHASSIS, resembled a pair of long "runner" skates, similar to those used in the Fens for skating races. Upon those runners the machine moved along the ground when starting to fly. In more modern machines the chassis is equipped with two or more small rubber-tyred wheels on which the machine runs along the ground before rising into the air, and on which it alights when a descent is made.

In the early days of aviation we frequently heard of an aviator losing his way, and being compelled to descend some miles from his required destination. There are on record various instances where airmen have lost their way when flying over the sea, and have drifted so far from land that they have been drowned. One of the most notable of such disasters was that which occurred to Mr. Hamel in 1914, when he was trying to cross the English Channel.

After the Zeppelin fund had brought in a sum of money which probably exceeded all expectations, a company was formed for the construction of dirigibles in the Zeppelin works on Lake Constance, and in 1909 an enormous air-ship was produced.

In shape a Zeppelin dirigible resembled a gigantic cigar, pointed at both ends. If placed with one end on the ground in Trafalgar Square, London, its other end would be nearly three times the height of the Nelson Column, which, as you may know, is 166 feet.

Those of us who have seen an aeroplane rise from the ground know that it runs quickly along for 50 or 60 yards, until sufficient momentum has been gained for the craft to lift itself into the air. The Wrights, as stated, fitted their machine with a pair of launching runners which projected from the under side of the lower plane like two very long skates, and the method of launching their craft was quite different from that followed nowadays.

Visitors to Brooklands aerodrome on 25th September, 1913, saw one of the greatest sensations in this or any other century, for on that date a daring French aviator, M. Pegoud, performed the hazardous feat of flying upside down.

Modern air-ships are of three general types: RIGID, SEMI-RIGID, and NON-RIGID. These differ from one another, as the names suggest, in the important feature, the RIGIDITY, NON-RIGIDITY, and PARTIAL RIGIDITY of the gas envelope.

In November, 1906, nearly the whole civilized world was astonished to read that a rich young Brazilian aeronaut, residing in France, had actually succeeded in making a short flight, or, shall we say, an enormous "hop", in a heavier-than-air machine.

This pioneer of aviation was M. Santos Dumont. For five or six years before his experiments with the aeroplane he had made a great many flights in balloons, and also in dirigible balloons. He was the son of well-to-do parents - his father was a successful coffee planter - and he had ample means to carry on his costly experiments.

After M. Pegoud's exhibition of upside-down flying in this country it was only to be expected that British aviators would emulate his daring feat. Indeed, on the same day that the little Frenchman was turning somersaults in the air at Brooklands Mr. Hamel was asking M. Bleriot for a machine similar to that used by Pegoud, so that he might demonstrate to airmen the stability of the aeroplane in almost all conceivable positions.

However, it was not the daring and skilful Hamel who had the honour of first following in Pegoud's footsteps, but another celebrated pilot, Mr. Hucks.

Hitherto we have described the rigid and semi-rigid types of air-ships. We have seen that the former maintains its shape without assistance from the gas which inflates its envelope and supplies the lifting power, while the latter, as its name implies, is dependent for its form partly on the flat rigid framework to which the car is attached, and partly on the gas balloon.

Syndicate content