William J. Claxton

For nearly a century after the invention of the Montgolfier and Charlier balloons there was not much progress made in the science of aeronautics. True, inventors such as Charles Green suggested and carried out new methods of inflating balloons, and scientific observations of great importance were made by balloonists both in Britain and on the Continent. But in the all-important work of steering the huge craft, progress was for many years practically at a standstill.

Now that the internal-combustion engine had arrived, the Wrights at once commenced the construction of an aeroplane which could be driven by mechanical power. Hitherto, as we have seen, they had made numerous tests with motorless gliders; but though these tests gave them much valuable information concerning the best methods of keeping their craft on an even keel while in the air, they could never hope to make much progress in practical flight until they adopted motor power which would propel the machine through the air.

For the discovery of how to find the atmospheric pressure we are indebted to an Italian named Torricelli, a pupil of Galileo, who carried out numerous experiments on the atmosphere toward the close of the sixteenth century.

In Berlin, on March 8, 1917, there passed away a man whose name will be remembered as long as the English language is spoken. For Count Zeppelin belongs to that little band of men who giving birth to a work of genius have also given their names to the christening of it; and so the patronymic will pass down the ages.

The under part of the frame of the Wright biplane, technically known as the CHASSIS, resembled a pair of long "runner" skates, similar to those used in the Fens for skating races. Upon those runners the machine moved along the ground when starting to fly. In more modern machines the chassis is equipped with two or more small rubber-tyred wheels on which the machine runs along the ground before rising into the air, and on which it alights when a descent is made.

One of the first questions the visitor to an aerodrome, when watching the altitude tests, asks is: "How is it known that the airman has risen to a height of so many feet?" Does he guess at the distance he is above the earth?

If this were so, then it is very evident that there would be great difficulty in awarding a prize to a number of competitors each trying to ascend higher than his rivals.

No; the pilot does not guess at his flying height, but he finds it by a height-recording instrument called the BAROGRAPH.

After the Zeppelin fund had brought in a sum of money which probably exceeded all expectations, a company was formed for the construction of dirigibles in the Zeppelin works on Lake Constance, and in 1909 an enormous air-ship was produced.

In shape a Zeppelin dirigible resembled a gigantic cigar, pointed at both ends. If placed with one end on the ground in Trafalgar Square, London, its other end would be nearly three times the height of the Nelson Column, which, as you may know, is 166 feet.

Those of us who have seen an aeroplane rise from the ground know that it runs quickly along for 50 or 60 yards, until sufficient momentum has been gained for the craft to lift itself into the air. The Wrights, as stated, fitted their machine with a pair of launching runners which projected from the under side of the lower plane like two very long skates, and the method of launching their craft was quite different from that followed nowadays.

In the early days of aviation we frequently heard of an aviator losing his way, and being compelled to descend some miles from his required destination. There are on record various instances where airmen have lost their way when flying over the sea, and have drifted so far from land that they have been drowned. One of the most notable of such disasters was that which occurred to Mr. Hamel in 1914, when he was trying to cross the English Channel.

Modern air-ships are of three general types: RIGID, SEMI-RIGID, and NON-RIGID. These differ from one another, as the names suggest, in the important feature, the RIGIDITY, NON-RIGIDITY, and PARTIAL RIGIDITY of the gas envelope.

Syndicate content