Frederick A. Talbot

The airman has not been allowed to hold his undisputed sway in military operations for long. Desperate situations demand drastic remedies and already considerable and illuminating ingenuity is being displayed to baffle and mislead the scout of the skies.

When the airship and the aeroplane became accepted units of warfare it was only natural that efforts should be concentrated upon the evolution of ways and means to compass their destruction or, at least, to restrict their field of activity. But aircraft appeared to have an immense advantage in combat. They possess virtually unlimited space in which to manoeuvre, and are able to select the elevation from which to hurl their missiles of destruction.

by Frederick A. Talbot

The immobile anti-aircraft gun, as distinct from that attached to a travelling carriage such as a motor-car, may be subdivided into two classes. The one is the fixed arm which cannot be moved readily, mounted upon a permanent emplacement; the other is the field-piece which, while fired from a stationary position, may be moved from point to point upon a suitable carriage.

Ever since the earliest days of the great conquest of the air, first by the dirigible balloon and then by the aeroplane, their use in time of war has been a fruitful theme for discussion. But their arrival was of too recent a date, their many utilities too unexplored to provide anything other than theories, many obviously untenable, others avowedly problematical.

Yet the part airships have played in the Greatest War has come as a surprise even to their most convinced advocates. For every expectation shattered, they have shown a more than compensating possibility of usefulness.

While the anti-aircraft gun represents the only force which has been brought to the practical stage for repelling aerial attack, and incidentally is the sole offensive weapon which has established its effectiveness, many other schemes have been devised and suggested to consummate these ends. While some of these schemes are wildly fantastic, others are feasible within certain limitations, as for instance when directed against dirigibles.

It is a curious circumstance that an invention, which is hailed as being one of the greatest achievements ever recorded in the march of civilisation, should be devoted essentially to the maiming of humanity and the destruction of property. In no other trend of human endeavour is this factor so potently demonstrated as in connection with Man's Conquest of the Air.

In a previous chapter the various methods of signalling between the ground and the airman aloft have been described. Seeing that wireless telegraphy has made such enormous strides and has advanced to such a degree of perfection, one naturally would conclude that it constitutes an ideal system of communication under such conditions in military operations.

But this is not the case. Wireless is utilised only to a very limited extent. This is due to two causes. The one is of a technical, the other of a strategical character.

Although the captive balloon is recognised as indispensable in military operations, its uses are somewhat limited. It can be employed only in comparatively still weather. The reason is obvious. It is essential that the balloon should assume a vertical line in relation to its winding plant upon the ground beneath, so that it may attain the maximum elevation possible: in other words, the balloon should be directly above the station below, so that if 100 yards of cable are paid out the aerostat may be 100 yards above the ground.

When once the flying machine had indicated its possibilities in connection with land operations it was only natural that endeavours should be made to adapt it to the more rigorous requirements of the naval service. But the conditions are so vastly dissimilar that only a meagre measure of success has been recorded.

Syndicate content