LONG-DISTANCE TELEPHONY

What Happens When You Talk into a Telephone Receiver

In Omaha, Nebraska, half-way across the continent and about forty hours from Boston by fast train, a man sits comfortably in his office chair and, with no more exertion than is required to lift a portable receiver off his desk, talks every day to his representative in the chief New England city. The man in Boston hears his chief's voice and can recognise the peculiarities in it just as if he stood in the same room with him. The man in Nebraska, speaking in an ordinary conversational tone, can be heard perfectly well in Boston, 1,400 miles away.

This is the longest talk on record—that is, it is the longest continuous telephone line in steady and constant use, though the human voice has been carried even greater distances with the aid of this wonderful instrument.

The telephone is so common that no one stops to consider the wonder of it, and not one person in a hundred can tell how it works.

At this time, when the telephone is as necessary as pen and ink, it is hard to realise a time when men could not speak to one another from a distance, yet a little more than a quarter of a century ago the genius who invented it first conceived the great idea.

Sometimes an inventor is a prophet: he sees in advance how his idea, perfected and in universal use, will change things, establish new manners and customs, new laws and new methods. Alexander Graham Bell was one of these prophetic inventors—the telephone was his invention, not his discovery. He first got the idea and then sought a way to make it practical. If you put yourself in his place, forget what has been accomplished, and put out of mind how the voice is transmitted from place to place by the slender wire, it would be impossible even then to realise how much in the dark Professor Bell was in 1874.

The human speaking voice is full of changes; unlike the notes from a musical instrument, there is no uniformity in it; the rise and fall of inflection, the varying sound of the vowels and consonants, the combinations of words and syllables—each produces a different vibration and different tone. To devise an instrument that would receive all these varying tones and inflections and change them into some other form of energy so that they could be passed over a wire, and then change them back to their original form, reproducing each sound and every peculiarity of the voice of the speaker in the ear of the hearer, was the task that Professor Bell set for himself. Just as you would sit down to add up a big column of figures, knowing that sooner or later you would get the correct answer, so he set himself to work out this problem in invention. The result of his study and determination is the telephones we use to-day. Many improvements have been invented by other men—Berliner, Edison, Blake, and others—but the idea and the working out of the principle is due to Professor Bell.

Every telephone receiver and transmitter has a mouth-and ear-piece to receive or throw out the sound, a thin round sheet of lacquered metal—called a diaphragm, and an electromagnet; together they reproduce human speech. An electric current from a battery or from the central station flows continuously through the wires wound round the electromagnet in receiving and transmitting instruments, so when you speak into the black mouthpiece of the wall or desk receiver the vibrations strike against the thin sheet-iron diaphragm at the small end of the mouthpiece; the sound waves of the voice make it vibrate to a greater or less degree; the diaphragm is placed so that the core of the electromagnet is close to it, and as it vibrates the iron in it produces undulations (by induction) in the current which is flowing through the wires wound round the soft iron centre of the magnet. The wires of the coil are connected with the lines that go to the receiving telephone, so that this undulating current, coiling round the core of the magnet in the receiver, attracts and repels the iron of the diaphragm in it, and it vibrates just as the transmitter diaphragm did when spoken into; the undulating current is translated by it into words and sentences that have all the peculiarities of the original. And so when speaking into a telephone your voice is converted into undulations or waves in an electric current conveyed with incredible swiftness to the receiving instrument, and these are translated back into the vibrations that produce speech. This is really what takes place when you talk over a toy telephone made by a string stretched between the two tin mouth-pieces held at opposite sides of the room, with the difference that in the telephone the vibrations are carried electrically, while the toy carries them mechanically and not nearly so perfectly.

For once the world realised immediately the importance of a revolutionising invention, and telephone stations soon began to be established in the large cities. Quicker than the telegraph, for there was no need of an operator to translate the message, and more accurate, for if spoken clearly the words could be as clearly understood, the telephone service spread rapidly. Lines stretched farther and farther out from the central stations in the cities as improvements were invented, until the outlying wires of one town reached the outstretched lines of another, and then communication between town and town was established. Then two distant cities talked to each other through an intermediate town, and long-distance telephony was established. To-day special lines are built to carry long-distance messages from one great city to another, and these direct lines are used entirely except when storms break through or the rush of business makes the roundabout route through intermediate cities necessary.