V. ANATOMY AND PHYSIOLOGY IN THE NINETEENTH CENTURY

Just at the time when the microscope was opening up the paths that were to lead to the wonderful cell theory, another novel line of interrogation of the living organism was being put forward by a different set of observers. Two great schools of physiological chemistry had arisen—one under guidance of Liebig and Wohler, in Germany, the other dominated by the great French master Jean Baptiste Dumas. Liebig had at one time contemplated the study of medicine, and Dumas had achieved distinction in connection with Prevost, at Geneva, in the field of pure physiology before he turned his attention especially to chemistry. Both these masters, therefore, and Wohler as well, found absorbing interest in those phases of chemistry that have to do with the functions of living tissues; and it was largely through their efforts and the labors of their followers that the prevalent idea that vital processes are dominated by unique laws was discarded and physiology was brought within the recognized province of the chemist. So at about the time when the microscope had taught that the cell is the really essential structure of the living organism, the chemists had come to understand that every function of the organism is really the expression of a chemical change—that each cell is, in short, a miniature chemical laboratory. And it was this combined point of view of anatomist and chemist, this union of hitherto dissociated forces, that made possible the inroads into the unexplored fields of physiology that were effected towards the middle of the nineteenth century.

One of the first subjects reinvestigated and brought to proximal solution was the long-mooted question of the digestion of foods. Spallanzani and Hunter had shown in the previous century that digestion is in some sort a solution of foods; but little advance was made upon their work until 1824, when Prout detected the presence of hydrochloric acid in the gastric juice. A decade later Sprott and Boyd detected the existence of peculiar glands in the gastric mucous membrane; and Cagniard la Tour and Schwann independently discovered that the really active principle of the gastric juice is a substance which was named pepsin, and which was shown by Schwann to be active in the presence of hydrochloric acid.

Almost coincidently, in 1836, it was discovered by Purkinje and Pappenheim that another organ than the stomach—namely, the pancreas—has a share in digestion, and in the course of the ensuing decade it came to be known, through the efforts of Eberle, Valentin, and Claude Bernard, that this organ is all-important in the digestion of starchy and fatty foods. It was found, too, that the liver and the intestinal glands have each an important share in the work of preparing foods for absorption, as also has the saliva—that, in short, a coalition of forces is necessary for the digestion of all ordinary foods taken into the stomach.

And the chemists soon discovered that in each one of the essential digestive juices there is at least one substance having certain resemblances to pepsin, though acting on different kinds of food. The point of resemblance between all these essential digestive agents is that each has the remarkable property of acting on relatively enormous quantities of the substance which it can digest without itself being destroyed or apparently even altered. In virtue of this strange property, pepsin and the allied substances were spoken of as ferments, but more recently it is customary to distinguish them from such organized ferments as yeast by designating them enzymes. The isolation of these enzymes, and an appreciation of their mode of action, mark a long step towards the solution of the riddle of digestion, but it must be added that we are still quite in the dark as to the real ultimate nature of their strange activity.

In a comprehensive view, the digestive organs, taken as a whole, are a gateway between the outside world and the more intimate cells of the organism. Another equally important gateway is furnished by the lungs, and here also there was much obscurity about the exact method of functioning at the time of the revival of physiological chemistry. That oxygen is consumed and carbonic acid given off during respiration the chemists of the age of Priestley and Lavoisier had indeed made clear, but the mistaken notion prevailed that it was in the lungs themselves that the important burning of fuel occurs, of which carbonic acid is a chief product. But now that attention had been called to the importance of the ultimate cell, this misconception could not long hold its ground, and as early as 1842 Liebig, in the course of his studies of animal heat, became convinced that it is not in the lungs, but in the ultimate tissues to which they are tributary, that the true consumption of fuel takes place. Reviving Lavoisier's idea, with modifications and additions, Liebig contended, and in the face of opposition finally demonstrated, that the source of animal heat is really the consumption of the fuel taken in through the stomach and the lungs. He showed that all the activities of life are really the product of energy liberated solely through destructive processes, amounting, broadly speaking, to combustion occurring in the ultimate cells of the organism. Here is his argument:

LIEBIG ON ANIMAL HEAT

"The oxygen taken into the system is taken out again in the same forms, whether in summer or in winter; hence we expire more carbon in cold weather, and when the barometer is high, than we do in warm weather; and we must consume more or less carbon in our food in the same proportion; in Sweden more than in Sicily; and in our more temperate climate a full eighth more in winter than in summer.