THE eighteenth-century philosopher made great strides in his studies of the physical properties of matter and the application of these properties in mechanics, as the steam-engine, the balloon, the optic telegraph, the spinning-jenny, the cotton-gin, the chronometer, the perfected compass, the Leyden jar, the lightning-rod, and a host of minor inventions testify. In a speculative way he had thought out more or less tenable conceptions as to the ultimate nature of matter, as witness the theories of Leibnitz and Boscovich and Davy, to which we may recur. But he had not as yet conceived the notion of a distinction between matter and energy, which is so fundamental to the physics of a later epoch. He did not speak of heat, light, electricity, as forms of energy or "force"; he conceived them as subtile forms of matter—as highly attenuated yet tangible fluids, subject to gravitation and chemical attraction; though he had learned to measure none of them but heat with accuracy, and this one he could test only within narrow limits until late in the century, when Josiah Wedgwood, the famous potter, taught him to gauge the highest temperatures with the clay pyrometer.

He spoke of the matter of heat as being the most universally distributed fluid in nature; as entering in some degree into the composition of nearly all other substances; as being sometimes liquid, sometimes condensed or solid, and as having weight that could be detected with the balance. Following Newton, he spoke of light as a "corpuscular emanation" or fluid, composed of shining particles which possibly are transmutable into particles of heat, and which enter into chemical combination with the particles of other forms of matter. Electricity he considered a still more subtile kind of matter-perhaps an attenuated form of light. Magnetism, "vital fluid," and by some even a "gravic fluid," and a fluid of sound were placed in the same scale; and, taken together, all these supposed subtile forms of matter were classed as "imponderables."

This view of the nature of the "imponderables" was in some measure a retrogression, for many seventeenth- century philosophers, notably Hooke and Huygens and Boyle, had held more correct views; but the materialistic conception accorded so well with the eighteenth- century tendencies of thought that only here and there a philosopher like Euler called it in question, until well on towards the close of the century. Current speech referred to the materiality of the "imponderables " unquestioningly. Students of meteorology—a science that was just dawning—explained atmospheric phenomena on the supposition that heat, the heaviest imponderable, predominated in the lower atmosphere, and that light, electricity, and magnetism prevailed in successively higher strata. And Lavoisier, the most philosophical chemist of the century, retained heat and light on a par with oxygen, hydrogen, iron, and the rest, in his list of elementary substances.


But just at the close of the century the confidence in the status of the imponderables was rudely shaken in the minds of philosophers by the revival of the old idea of Fra Paolo and Bacon and Boyle, that heat, at any rate, is not a material fluid, but merely a mode of motion or vibration among the particles of "ponderable" matter. The new champion of the old doctrine as to the nature of heat was a very distinguished philosopher and diplomatist of the time, who, it may be worth recalling, was an American. He was a sadly expatriated American, it is true, as his name, given all the official appendages, will amply testify; but he had been born and reared in a Massachusetts village none the less, and he seems always to have retained a kindly interest in the land of his nativity, even though he lived abroad in the service of other powers during all the later years of his life, and was knighted by England, ennobled by Bavaria, and honored by the most distinguished scientific bodies of Europe. The American, then, who championed the vibratory theory of heat, in opposition to all current opinion, in this closing era of the eighteenth century, was Lieutenant-General Sir Benjamin Thompson, Count Rumford, F.R.S.

Rumford showed that heat may be produced in indefinite quantities by friction of bodies that do not themselves lose any appreciable matter in the process, and claimed that this proves the immateriality of heat. Later on he added force to the argument by proving, in refutation of the experiments of Bowditch, that no body either gains or loses weight in virtue of being heated or cooled. He thought he had proved that heat is only a form of motion.

His experiment for producing indefinite quantities of heat by friction is recorded by him in his paper entitled, "Inquiry Concerning the Source of Heat Excited by Friction."

"Being engaged, lately, in superintending the boring of cannon in the workshops of the military arsenal at Munich," he says, "I was struck with the very considerable degree of heat which a brass gun acquires in a short time in being bored; and with the still more intense heat (much greater than that of boiling water, as I found by experiment) of the metallic chips separated from it by the borer.

"Taking a cannon (a brass six-pounder), cast solid, and rough, as it came from the foundry, and fixing it horizontally in a machine used for boring, and at the same time finishing the outside of the cannon by turning, I caused its extremity to be cut off; and by turning down the metal in that part, a solid cylinder was formed, 7 3/4 inches in diameter and 9 8/10 inches long; which, when finished, remained joined to the rest of the metal (that which, properly speaking, constituted the cannon) by a small cylindrical neck, only 2 1/5 inches in diameter and 3 8/10 inches long.