But that this herculean labor of land-sculpturing could have been accomplished by the slow action of wind and frost and shower was an idea few men could grasp within the first half-century after Hutton propounded it; nor did it begin to gain general currency until Lyell's crusade against catastrophism, begun about 1830, had for a quarter of a century accustomed geologists to the thought of slow, continuous changes producing final results of colossal proportions. And even long after that it was combated by such men as Murchison, Director-General of the Geological Survey of Great Britain, then accounted the foremost field-geologist of his time, who continued to believe that the existing valleys owe their main features to subterranean forces of upheaval. Even Murchison, however, made some recession from the belief of the Continental authorities, Elie de Beaumont and Leopold von Buch, who contended that the mountains had sprung up like veritable jacks-in-the-box. Von Buch, whom his friend and fellow-pupil Von Humboldt considered the foremost geologist of the time, died in 1853, still firm in his early faith that the erratic bowlders found high on the Jura had been hurled there, like cannon-balls, across the valley of Geneva by the sudden upheaval of a neighboring mountain-range.


The bowlders whose presence on the crags of the Jura the old Gerinan accounted for in a manner so theatrical had long been a source of contention among geologists. They are found not merely on the Jura, but on numberless other mountains in all north-temperate latitudes, and often far out in the open country, as many a farmer who has broken his plough against them might testify. The early geologists accounted for them, as for nearly everything else, with their supposititious Deluge. Brongniart and Cuvier and Buckland and their contemporaries appeared to have no difficulty in conceiving that masses of granite weighing hundreds of tons had been swept by this current scores or hundreds of miles from their source. But, of course, the uniformitarian faith permitted no such explanation, nor could it countenance the projection idea; so Lyell was bound to find some other means of transportation for the puzzling erratics.

The only available medium was ice, but, fortunately, this one seemed quite sufficient. Icebergs, said Lyell, are observed to carry all manner of debris, and deposit it in the sea-bottoms. Present land surfaces have often been submerged beneath the sea. During the latest of these submergences icebergs deposited the bowlders now scattered here and there over the land. Nothing could be simpler or more clearly uniformitarian. And even the catastrophists, though they met Lyell amicably on almost no other theoretical ground, were inclined to admit the plausibility of his theory of erratics. Indeed, of all Lyell's nonconformist doctrines, this seemed the one most likely to meet with general acceptance.

Yet, even as this iceberg theory loomed large and larger before the geological world, observations were making in a different field that were destined to show its fallacy. As early as 1815 a sharp-eyed chamois- hunter of the Alps, Perraudin by name, had noted the existence of the erratics, and, unlike most of his companion hunters, had puzzled his head as to how the bowlders got where he saw them. He knew nothing of submerged continents or of icebergs, still less of upheaving mountains; and though he doubtless had heard of the Flood, he had no experience of heavy rocks floating like corks in water. Moreover, he had never observed stones rolling uphill and perching themselves on mountain-tops, and he was a good enough uniformitarian (though he would have been puzzled indeed had any one told him so) to disbelieve that stones in past times had disported themselves differently in this regard from stones of the present. Yet there the stones are. How did they get there?

The mountaineer thought that he could answer that question. He saw about him those gigantic serpent- like streams of ice called glaciers, "from their far fountains slow rolling on," carrying with them blocks of granite and other debris to form moraine deposits. If these glaciers had once been much more extensive than they now are, they might have carried the bowlders and left them where we find them. On the other hand, no other natural agency within the sphere of the chamois-hunter's knowledge could have accomplished this, ergo the glaciers must once have been more extensive. Perraudin would probably have said that common-sense drove him to this conclusion; but be that as it may, he had conceived one of the few truly original and novel ideas of which the nineteenth century can boast.

Perraudin announced his idea to the greatest scientist in his little world—Jean de Charpentier, director of the mines at Bex, a skilled geologist who had been a fellow-pupil of Von Buch and Von Humboldt under Werner at the Freiberg School of Mines. Charpentier laughed at the mountaineer's grotesque idea, and thought no more about it. And ten years elapsed before Perraudin could find any one who treated his notion with greater respect. Then he found a listener in M. Venetz, a civil engineer, who read a paper on the novel glacial theory before a local society in 1823. This brought the matter once more to the attention of De Charpentier, who now felt that there might be something in it worth investigation.

A survey of the field in the light of the new theory soon convinced Charpentier that the chamois-hunter had all along been right. He became an enthusiastic supporter of the idea that the Alps had once been imbedded in a mass of ice, and in 1836 he brought the notion to the attention of Louis Agassiz, who was spending the summer in the Alps. Agassiz was sceptical at first, but soon became a convert.