III. THE NEW SCIENCE OF PALEONTOLOGY. WILLIAM SMITH AND FOSSIL SHELLS

"I am not hazarding at present any hypothesis as to the probable rate of change, but none will deny that when the annual birth and the annual death of one species on the globe is proposed as a mere speculation, this, at least, is to imagine no slight degree of instability in the animate creation. If we divide the surface of the earth into twenty regions of equal area, one of these might comprehend a space of land and water about equal in dimensions to Europe, and might contain a twentieth part of the million of species which may be assumed to exist in the animal kingdom. In this region one species only could, according to the rate of mortality before assumed, perish in twenty years, or only five out of fifty thousand in the course of a century. But as a considerable portion of the whole world belongs to the aquatic classes, with which we have a very imperfect acquaintance, we must exclude them from our consideration, and, if they constitute half of the entire number, then one species only might be lost in forty years among the terrestrial tribes. Now the mammalia, whether terrestrial or aquatic, bear so small a proportion to other classes of animals, forming less, perhaps, than a thousandth part of a whole, that, if the longevity of species in the different orders were equal, a vast period must elapse before it would come to the turn of this conspicuous class to lose one of their number. If one species only of the whole animal kingdom died out in forty years, no more than one mammifer might disappear in forty thousand years, in a region of the dimensions of Europe.

"It is easy, therefore, to see that in a small portion of such an area, in countries, for example, of the size of England and France, periods of much greater duration must elapse before it would be possible to authenticate the first appearance of one of the larger plants or animals, assuming the annual birth and death of one species to be the rate of vicissitude in the animal creation throughout the world."[3]

In a word, then, said Lyell, it becomes clear that the numberless species that have been exterminated in the past have died out one by one, just as individuals of a species die, not in vast shoals; if whole populations have passed away, it has been not by instantaneous extermination, but by the elimination of a species now here, now there, much as one generation succeeds another in the life history of any single species. The causes which have brought about such gradual exterminations, and in the long lapse of ages have resulted in rotations of population, are the same natural causes that are still in operation. Species have died out in the past as they are dying out in the present, under influence of changed surroundings, such as altered climate, or the migration into their territory of more masterful species. Past and present causes are one—natural law is changeless and eternal.

Such was the essence of the Huttonian doctrine, which Lyell adopted and extended, and with which his name will always be associated. Largely through his efforts, though of course not without the aid of many other workers after a time, this idea—the doctrine of uniformitarianism, it came to be called—became the accepted dogma of the geologic world not long after the middle of the nineteenth century. The catastrophists, after clinging madly to their phantom for a generation, at last capitulated without terms: the old heresy became the new orthodoxy, and the way was paved for a fresh controversy.

THE ORIGIN OF SPECIES

The fresh controversy followed quite as a matter of course. For the idea of catastrophism had not concerned the destruction of species merely, but their introduction as well. If whole faunas had been extirpated suddenly, new faunas had presumably been introduced with equal suddenness by special creation; but if species die out gradually, the introduction of new species may be presumed to be correspondingly gradual. Then may not the new species of a later geological epoch be the modified lineal descendants of the extinct population of an earlier epoch?

The idea that such might be the case was not new. It had been suggested when fossils first began to attract conspicuous attention; and such sagacious thinkers as Buffon and Kant and Goethe and Erasmus Darwin had been disposed to accept it in the closing days of the eighteenth century. Then, in 1809, it had been contended for by one of the early workers in systematic paleontology—Jean Baptiste Lamarck, who had studied the fossil shells about Paris while Cuvier studied the vertebrates, and who had been led by these studies to conclude that there had been not merely a rotation but a progression of life on the globe. He found the fossil shells—the fossils of invertebrates, as he himself had christened them—in deeper strata than Cuvier's vertebrates; and he believed that there had been long ages when no higher forms than these were in existence, and that in successive ages fishes, and then reptiles, had been the highest of animate creatures, before mammals, including man, appeared. Looking beyond the pale of his bare facts, as genius sometimes will, he had insisted that these progressive populations had developed one from another, under influence of changed surroundings, in unbroken series.