XIII. INSTRUMENTS OF PRECISION IN THE AGE OF NEWTON

During the Newtonian epoch there were numerous important inventions of scientific instruments, as well as many improvements made upon the older ones. Some of these discoveries have been referred to briefly in other places, but their importance in promoting scientific investigation warrants a fuller treatment of some of the more significant.

Many of the errors that had arisen in various scientific calculations before the seventeenth century may be ascribed to the crudeness and inaccuracy in the construction of most scientific instruments. Scientists had not as yet learned that an approach to absolute accuracy was necessary in every investigation in the field of science, and that such accuracy must be extended to the construction of the instruments used in these investigations and observations. In astronomy it is obvious that instruments of delicate exactness are most essential; yet Tycho Brahe, who lived in the sixteenth century, is credited with being the first astronomer whose instruments show extreme care in construction.

It seems practically settled that the first telescope was invented in Holland in 1608; but three men, Hans Lippershey, James Metius, and Zacharias Jansen, have been given the credit of the invention at different times. It would seem from certain papers, now in the library of the University of Leyden, and included in Huygens's papers, that Lippershey was probably the first to invent a telescope and to describe his invention. The story is told that Lippershey, who was a spectacle-maker, stumbled by accident upon the discovery that when two lenses are held at a certain distance apart, objects at a distance appear nearer and larger. Having made this discovery, be fitted two lenses with a tube so as to maintain them at the proper distance, and thus constructed the first telescope.

It was Galileo, however, as referred to in a preceding chapter, who first constructed a telescope based on his knowledge of the laws of refraction. In 1609, having heard that an instrument had been invented, consisting of two lenses fixed in a tube, whereby objects were made to appear larger and nearer, he set about constructing such an instrument that should follow out the known effects of refraction. His first telescope, made of two lenses fixed in a lead pipe, was soon followed by others of improved types, Galileo devoting much time and labor to perfecting lenses and correcting errors. In fact, his work in developing the instrument was so important that the telescope came gradually to be known as the "Galilean telescope."

In the construction of his telescope Galileo made use of a convex and a concave lens; but shortly after this Kepler invented an instrument in which both the lenses used were convex. This telescope gave a much larger field of view than the Galilean telescope, but did not give as clear an image, and in consequence did not come into general use until the middle of the seventeenth century. The first powerful telescope of this type was made by Huygens and his brother. It was of twelve feet focal length, and enabled Huygens to discover a new satellite of Saturn, and to determine also the true explanation of Saturn's ring.

It was Huygens, together with Malvasia and Auzout, who first applied the micrometer to the telescope, although the inventor of the first micrometer was William Gascoigne, of Yorkshire, about 1636. The micrometer as used in telescopes enables the observer to measure accurately small angular distances. Before the invention of the telescope such measurements were limited to the angle that could be distinguished by the naked eye, and were, of course, only approximately accurate. Even very careful observers, such as Tycho Brahe, were able to obtain only fairly accurate results. But by applying Gascoigne's invention to the telescope almost absolute accuracy became at once possible. The principle of Gascoigne's micrometer was that of two pointers lying parallel, and in this position pointing to zero. These were arranged so that the turning of a single screw separated or approximated them at will, and the angle thus formed could be determined with absolute accuracy.

Huygens's micrometer was a slip of metal of variable breadth inserted at the focus of the telescope. By observing at what point this exactly covered an object under examination, and knowing the focal length of the telescope and the width of the metal, he could then deduce the apparent angular breadth of the object. Huygens discovered also that an object placed in the common focus of the two lenses of a Kepler telescope appears distinct and clearly defined. The micrometers of Malvasia, and later of Auzout and Picard, are the development of this discovery. Malvasia's micrometer, which he described in 1662, consisted of fine silver wires placed at right-angles at the focus of his telescope.

As telescopes increased in power, however, it was found that even the finest wire, or silk filaments, were much too thick for astronomical observations, as they obliterated the image, and so, finally, the spider-web came into use and is still used in micrometers and other similar instruments. Before that time, however, the fine crossed wires had revolutionized astronomical observations. "We may judge how great was the improvement which these contrivances introduced into the art of observing," says Whewell, "by finding that Hevelius refused to adopt them because they would make all the old observations of no value. He had spent a laborious and active life in the exercise of the old methods, and could not bear to think that all the treasures which he had accumulated had lost their worth by the discovery of a new mine of richer ones."[1]