VII. FROM PARACELSUS TO HARVEY

"After the bandage has been kept on some short time in this way, let it be slackened a little, brought to the state or term of middling tightness which is used in bleeding, and it will be seen that the whole hand and arm will instantly become deeply suffused and distended, injected, gorged with blood, DRAWN, as it is said, by this middling ligature, without pain, or heat, or any horror of a vacuum, or any other cause yet indicated.

"As we have noted, in connection with the tight ligature, that the artery above the bandage was distended and pulsated, not below it, so, in the case of the moderately tight bandage, on the contrary, do we find that the veins below, never above, the fillet swell and become dilated, while the arteries shrink; and such is the degree of distention of the veins here that it is only very strong pressure that will force the blood beyond the fillet and cause any of the veins in the upper part of the arm to rise.

"From these facts it is easy for any careful observer to learn that the blood enters an extremity by the arteries; for when they are effectively compressed nothing is DRAWN to the member; the hand preserves its color; nothing flows into it, neither is it distended; but when the pressure is diminished, as it is with the bleeding fillet, it is manifest that the blood is instantly thrown in with force, for then the hand begins to swell; which is as much as to say that when the arteries pulsate the blood is flowing through them, as it is when the moderately tight ligature is applied; but when they do not pulsate, or when a tight ligature is used, they cease from transmitting anything; they are only distended above the part where the ligature is applied. The veins again being compressed, nothing can flow through them; the certain indication of which is that below the ligature they are much more tumid than above it, and than they usually appear when there is no bandage upon the arm.

"It therefore plainly appears that the ligature prevents the return of the blood through the veins to the parts above it, and maintains those beneath it in a state of permanent distention. But the arteries, in spite of the pressure, and under the force and impulse of the heart, send on the blood from the internal parts of the body to the parts beyond the bandage."[5]

This use of ligatures is very significant, because, as shown, a very tight ligature stops circulation in both arteries and veins, while a loose one, while checking the circulation in the veins, which lie nearer the surface and are not so directly influenced by the force of the heart, does not stop the passage of blood in the arteries, which are usually deeply imbedded in the tissues, and not so easily influenced by pressure from without.

The last step of Harvey's demonstration was to prove that the blood does flow along the veins to the heart, aided by the valves that had been the cause of so much discussion and dispute between the great sixteenth-century anatomists. Harvey not only demonstrated the presence of these valves, but showed conclusively, by simple experiments, what their function was, thus completing his demonstration of the phenomena of the circulation.

The final ocular demonstration of the passage of the blood from the arteries to the veins was not to be made until four years after Harvey's death. This process, which can be observed easily in the web of a frog's foot by the aid of a low-power lens, was first demonstrated by Marcello Malpighi (1628-1694) in 1661. By the aid of a lens he first saw the small "capillary" vessels connecting the veins and arteries in a piece of dried lung. Taking his cue from this, he examined the lung of a turtle, and was able to see in it the passage of the corpuscles through these minute vessels, making their way along these previously unknown channels from the arteries into the veins on their journey back to the heart. Thus the work of Harvey, all but complete, was made absolutely entire by the great Italian. And all this in a single generation.

LEEUWENHOEK DISCOVERS BACTERIA

The seventeenth century was not to close, however, without another discovery in science, which, when applied to the causation of disease almost two centuries later, revolutionized therapeutics more completely than any one discovery. This was the discovery of microbes, by Antonius von Leeuwenhoek (1632-1723), in 1683. Von Leeuwenhoek discovered that "in the white matter between his teeth" there were millions of microscopic "animals"—more, in fact, than "there were human beings in the united Netherlands," and all "moving in the most delightful manner." There can be no question that he saw them, for we can recognize in his descriptions of these various forms of little "animals" the four principal forms of microbes—the long and short rods of bacilli and bacteria, the spheres of micrococci, and the corkscrew spirillum.

The presence of these microbes in his mouth greatly annoyed Antonius, and he tried various methods of getting rid of them, such as using vinegar and hot coffee. In doing this he little suspected that he was anticipating modern antiseptic surgery by a century and three-quarters, and to be attempting what antiseptic surgery is now able to accomplish. For the fundamental principle of antisepsis is the use of medicines for ridding wounds of similar microscopic organisms. Von Leenwenhoek was only temporarily successful in his attempts, however, and took occasion to communicate his discovery to the Royal Society of England, hoping that they would be "interested in this novelty." Probably they were, but not sufficiently so for any member to pursue any protracted investigations or reach any satisfactory conclusions, and the whole matter was practically forgotten until the middle of the nineteenth century.