II. EARLY EXPERIMENTS

So far, the stories of the development of flight are either legendary or of more or less doubtful authenticity, even including that of Danti, who, although a man of remarkable attainments in more directions than that of attempted flight, suffers - so far as reputation is concerned - from the inexactitudes of his chroniclers; he may have soared over Thrasimene, as stated, or a mere hop with an ineffectual glider may have grown with the years to a legend of gliding flight. So far, too, there is no evidence of the study that the conquest of the air demanded; such men as made experiments either launched themselves in the air from some height with made-up wings or other apparatus, and paid the penalty, or else constructed some form of machine which would not leave the earth, and then gave up. Each man followed his own way, and there was no attempt - without the printing press and the dissemination of knowledge there was little possibility of attempt - on the part of any one to benefit by the failures of others.

Legend and doubtful history carries up to the fifteenth century, and then came Leonardo da Vinci, first student of flight whose work endures to the present day. The world knows da Vinci as artist; his age knew him as architect, engineer, artist, and scientist in an age when science was a single study, comprising all knowledge from mathematics to medicine. He was, of course, in league with the devil, for in no other way could his range of knowledge and observation be explained by his contemporaries; he left a Treatise on the Flight of Birds in which are statements and deductions that had to be rediscovered when the Treatise had been forgotten - da Vinci anticipated modern knowledge as Plato anticipated modern thought, and blazed the first broad trail toward flight.

One Cuperus, who wrote a Treatise on the Excellence of Man, asserted that da Vinci translated his theories into practice, and actually flew, but the statement is unsupported. That he made models, especially on the helicopter principle, is past question; these were made of paper and wire, and actuated by springs of steel wire, which caused them to lift themselves in the air. It is, however, in the theories which he put forward that da Vinci's investigations are of greatest interest; these prove him a patient as well as a keen student of the principles of flight, and show that his manifold activities did not prevent him from devoting some lengthy periods to observations of bird flight.

'A bird,' he says in his Treatise, 'is an instrument working according to mathematical law, which instrument it is within the capacity of man to reproduce with all its movements, but not with a corresponding degree of strength, though it is deficient only in power of maintaining equilibrium. We may say, therefore, that such an instrument constructed by man is lacking in nothing except the life of the bird, and this life must needs be supplied from that of man. The life which resides in the bird's members will, without doubt, better conform to their needs than will that of a man which is separated from them, and especially in the almost imperceptible movements which produce equilibrium. But since we see that the bird is equipped for many apparent varieties of movement, we are able from this experience to deduce that the most rudimentary of these movements will be capable of being comprehended by man's understanding, and that he will to a great extent be able to provide against the destruction of that instrument of which he himself has become the living principle and the propeller.'

In this is the definite belief of da Vinci that man is capable of flight, together with a far more definite statement of the principles by which flight is to be achieved than any which had preceded it - and for that matter, than many that have succeeded it. Two further extracts from his work will show the exactness of his observations: -

'When a bird which is in equilibrium throws the centre of resistance of the wings behind the centre of gravity, then such a bird will descend with its head downward. This bird which finds itself in equilibrium shall have the centre of resistance of the wings more forward than the bird's centre of gravity; then such a bird will fall with its tail turned toward the earth.'

And again: 'A man, when flying, shall be free from the waist up, that he may be able to keep himself in equilibrium as he does in a boat, so that the centre of his gravity and of the instrument may set itself in equilibrium and change when necessity requires it to the changing of the centre of its resistance.'