Reference

"Whatever difficulties we may have in forming a consistent idea of the constitution of the ether, there can be no doubt that the interplanetary and interstellar spaces are not empty, but are occupied by a material substance or body which is certainly the largest and probably the most uniform body of which we have any knowledge."

REFERENCE-LIST

CHAPTER I

THE SUCCESSORS OF NEWTON IN ASTRONOMY [1] (p. 10). An Account of Several Extraordinary Meteors or Lights in the Sky, by Dr. Edmund Halley. Phil. Trans. of Royal Society of London, vol. XXIX, pp. 159-162. Read before the Royal Society in the autumn of 1714. [2] (p. 13). Phil. Trans. of Royal Society of London for 1748, vol. XLV., pp. 8, 9. From A Letter to the Right Honorable George, Earl of Macclesfield, concerning an Apparent Motion observed in some of the Fixed Stars, by James Bradley, D.D., Astronomer Royal and F.R.S.

CHAPTER II

During the Newtonian epoch there were numerous important inventions of scientific instruments, as well as many improvements made upon the older ones. Some of these discoveries have been referred to briefly in other places, but their importance in promoting scientific investigation warrants a fuller treatment of some of the more significant.

We have seen how Gilbert, by his experiments with magnets, gave an impetus to the study of magnetism and electricity. Gilbert himself demonstrated some facts and advanced some theories, but the system of general laws was to come later. To this end the discovery of electrical repulsion, as well as attraction, by Von Guericke, with his sulphur ball, was a step forward; but something like a century passed after Gilbert's beginning before anything of much importance was done in the field of electricity.

Modern systematic botany and zoology are usually held to have their beginnings with Linnaeus.

An obvious distinction between the classical and mediaeval epochs may be found in the fact that the former produced, whereas the latter failed to produce, a few great thinkers in each generation who were imbued with that scepticism which is the foundation of the investigating spirit; who thought for themselves and supplied more or less rational explanations of observed phenomena. Could we eliminate the work of some score or so of classical observers and thinkers, the classical epoch would seem as much a dark age as does the epoch that succeeded it.

The successors of Mohammed showed themselves curiously receptive of the ideas of the western people whom they conquered. They came in contact with the Greeks in western Asia and in Egypt, and, as has been said, became their virtual successors in carrying forward the torch of learning. It must not be inferred, however, that the Arabian scholars, as a class, were comparable to their predecessors in creative genius. On the contrary, they retained much of the conservative oriental spirit.

We have previously referred to the influence of the Byzantine civilization in transmitting the learning of antiquity across the abysm of the dark age. It must be admitted, however, that the importance of that civilization did not extend much beyond the task of the common carrier. There were no great creative scientists in the later Roman empire of the East any more than in the corresponding empire of the West. There was, however, one field in which the Byzantine made respectable progress and regarding which their efforts require a few words of special comment.

We have seen that the Ptolemaic astronomy, which was the accepted doctrine throughout the Middle Ages, taught that the earth is round. Doubtless there was a popular opinion current which regarded the earth as flat, but it must be understood that this opinion had no champions among men of science during the Middle Ages. When, in the year 1492, Columbus sailed out to the west on his memorable voyage, his expectation of reaching India had full scientific warrant, however much it may have been scouted by certain ecclesiastics and by the average man of the period.

Syndicate content