Frederick A. Talbot

It is a curious circumstance that an invention, which is hailed as being one of the greatest achievements ever recorded in the march of civilisation, should be devoted essentially to the maiming of humanity and the destruction of property. In no other trend of human endeavour is this factor so potently demonstrated as in connection with Man's Conquest of the Air.

In a previous chapter the various methods of signalling between the ground and the airman aloft have been described. Seeing that wireless telegraphy has made such enormous strides and has advanced to such a degree of perfection, one naturally would conclude that it constitutes an ideal system of communication under such conditions in military operations.

But this is not the case. Wireless is utilised only to a very limited extent. This is due to two causes. The one is of a technical, the other of a strategical character.

Although the captive balloon is recognised as indispensable in military operations, its uses are somewhat limited. It can be employed only in comparatively still weather. The reason is obvious. It is essential that the balloon should assume a vertical line in relation to its winding plant upon the ground beneath, so that it may attain the maximum elevation possible: in other words, the balloon should be directly above the station below, so that if 100 yards of cable are paid out the aerostat may be 100 yards above the ground.

When once the flying machine had indicated its possibilities in connection with land operations it was only natural that endeavours should be made to adapt it to the more rigorous requirements of the naval service. But the conditions are so vastly dissimilar that only a meagre measure of success has been recorded.

Two incidents in the history of aviation stand out with exceptional prominence. The one is the evolution of the Zeppelin airship - a story teeming with romance and affording striking and illuminating glimpses of dogged perseverance, grim determination in the face of repeated disasters, and the blind courageous faith of the inventor in the creation of his own brain. The second is the remarkable growth of Germany's military airship organisation, which has been so rapid and complete as to enable her to assume supremacy in this field, and that within the short span of a single decade.

Less than three years ago the momentous and spectacular race among the Powers of Europe for the supremacy of the air began. At first the struggle was confined to two rivals - France and Germany - but as time progressed and the importance of aerial fleets was recognised, other nations, notably Great Britain, entered the field.

So much has been said and written concerning the Zeppelin airship, particularly in its military aspect, that all other developments in this field have sunk into insignificance so far as the general public is concerned. The Zeppelin dirigible has come to be generally regarded as the one and only form of practical lighter-than-air type of aircraft. Moreover, the name has been driven home with such effect that it is regarded as the generic term for all German airships.

Although Germany, as compared with France, was relatively slow to recognise the immense possibilities of aircraft, particularly dirigibles, in the military sense, once the Zeppelin had received the well-wishes of the Emperor William, Teuton activities were so pronounced as to enable the leeway to be made up within a very short while. While the Zeppelin commanded the greatest attention owing to the interesting co-operation of the German Emperor, the other types met with official and royal recognition and encouragement as already mentioned.

Although the Zeppelin undoubtedly has been over-rated by the forces to which it is attached, at the same time it must not be under-estimated by its detractors. Larger and more powerful vessels of this type have been, and still are being, constructed, culminating, so far as is known, in the "L-5," which is stated to have a capacity of about 1,000,000 cubic feet, and to possess an average speed of 65 miles per hour.

Owing to the fertility of inventors and the resultant multiplicity of designs it is impossible to describe every type of heavier-than-air machine which has been submitted to the exacting requirements of military duty. The variety is infinite and the salient fact has already been established that many of the models which have proved reliable and efficient under normal conditions are unsuited to military operations. The early days of the war enabled those of doubtful value to be eliminated, the result being that those machines which are now in use represent the survival of the fittest.

Syndicate content